Answer:
the narrator means that before the universe was out forward to completion,
there were little things that came together to form other things
a typical example can be found in the big bang theory
Aluminum sulfide : Al₂S₃
ratio cation : anion = 2 : 3
<h3>Further explanation</h3>
Given
Compound of Aluminium
Required
cations anions ratio
Solution
Salt can be formed from cations and anions which have their respective charges.
In the chemical compound formula these charges are crossed with each other
For aluminum it has a +3 charge
1. Aluminum carbide : Al₄C₃
ratio cation : anion = 4 : 3
2. Aluminum chloride : AlCl₃
ratio cation : anion = 1 : 3
3. Aluminum sulfide : Al₂S₃
ratio cation : anion = 2 : 3
4. Aluminum nitride : AlN
ratio cation : anion = 1 : 1
What Grant felt was something known as a ‘static current’. Experiencing a light electrical shock when you touch another person, (in this case when Grant touched Olivia) is when electrons move quickly towards the protons.
If Ka for HBrO is 2. 8×10^−9 at 25°C, then the value of Kb for BrO− at 25°C is 3.5× 10^(-6).
<h3>
What is base dissociation constant?
</h3>
The base dissociation constant (Kb) is defined as the measurement of the ions which base can dissociate or dissolve in the aqueous solution. The greater the value of base dissociation constant greater will be its basicity an strength.
The dissociation reaction of hydrogen cyanide can be given as
HCN --- (H+) + (CN-)
Given,
The value of Ka for HCN is 2.8× 10^(-9)
The correlation between base dissociation constant and acid dissociation constant is
Kw = Ka × Kb
Kw = 10^(-14)
Substituting values of Ka and Kw,
Kb = 10^(-14) /{2.8×10^(-9) }
= 3.5× 10^(-6)
Thus, we find that if Ka for HBrO is 2. 8×10^−9 at 25°C, then the value of Kb for BrO− at 25°C is 3.5× 10^(-6).
DISCLAIMER: The above question have mistake. The correct question is given as
Question:
Given that Ka for HBrO is 2. 8×10^−9 at 25°C. What is the value of Kb for BrO− at 25°C?
learn more about base dissociation constant:
brainly.com/question/9234362
#SPJ4
Inorganic molecules are composed of other elements. They can contain hydrogen or carbon, but if they have both, they are organic.