To solve this problem it is necessary to use the concepts related to Snell's law.
Snell's law establishes that reflection is subject to

Where,
Angle between the normal surface at the point of contact
n = Indices of refraction for corresponding media
The total internal reflection would then be given by





Therefore the
would be equal to



Therefore the largest value of the angle α is 30.27°
80000 Joule is the change in the internal energy of the gas.
<h3>In Thermodynamics, work done by the gas during expansion at constant pressure:</h3>
ΔW = -pdV
ΔW = -pd (V₂ -V₁)
ΔW = - 1.65×10⁵ pa (0.320m³ - 0.110m³)
= - 0.35×10⁵ pa.m³
= - 35000 (N/m³)(m³)
= -35000 Nm
ΔW = -35000 Joule
Therefore, work done by the system = -35000 Joule
<h3>Change in the internal energy of the gas,</h3>
ΔV = ΔQ + ΔW
Given:
ΔQ = 1.15×10⁵ Joule
ΔW = -35000 Joule
ΔU = 1.15×10⁵ Joule - 35000 Joule
= 80000 Joule.
Therefore, the change in the internal energy of the gas= 80000 Joule.
Learn more about thermodynamics here:
brainly.com/question/14265296
#SPJ4
C. one complete spin on its axis because the rotation is referring to the planet's period of rotation. D is called a revolution. B determines the seasons on the planets. A is called an ellipse.
When one object is rubbed against another, static electricity can be created. This is because the rubbing creates a negative charge that is carried by electrons.