1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AlexFokin [52]
3 years ago
12

Identify the units NOT used when finding the density? 1. Length 2. Volume 3. Mass

Physics
2 answers:
sammy [17]3 years ago
6 0
Length is not used because the volume and mass are
Lubov Fominskaja [6]3 years ago
3 0
Length is not used. Mass and volume are used
You might be interested in
What type of acceleration does an object moving with constant speed in a circular path experience?Select one:A) constant acceler
olga_2 [115]

ANSWER:

D) centripetal acceleration.

STEP-BY-STEP EXPLANATION:

When a body performs a uniform circular motion, the direction of the velocity vector changes at every instant. This variation is experienced by the linear vector, due to a force called centripetal, directed towards the center of the circumference that gives rise to the centripetal acceleration.

Therefore, the answer is centripetal acceleration.

3 0
1 year ago
A particle initially located at the origin has an acceleration of vector a = 2.00ĵ m/s2 and an initial velocity of vector v i =
natali 33 [55]

With acceleration

\mathbf a=\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j

and initial velocity

\mathbf v(0)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i

the velocity at time <em>t</em> (b) is given by

\mathbf v(t)=\mathbf v(0)+\displaystyle\int_0^t\mathbf a\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\displaystyle\int_0^t\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\bigg|_{u=0}^{u=t}

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf j

We can get the position at time <em>t</em> (a) by integrating the velocity:

\mathbf x(t)=\mathbf x(0)+\displaystyle\int_0^t\mathbf v(u)\,\mathrm du

The particle starts at the origin, so \mathbf x(0)=\mathbf0.

\mathbf x(t)=\displaystyle\int_0^t\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\,\mathrm du

\mathbf x(t)=\left(\left(8.00\dfrac{\rm m}{\rm s}\right)u\,\mathbf i+\dfrac12\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf j\right)\bigg|_{u=0}^{u=t}

\mathbf x(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)t\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)t^2\,\mathbf j

Get the coordinates at <em>t</em> = 8.00 s by evaluating \mathbf x(t) at this time:

\mathbf x(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)(8.00\,\mathrm s)\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)^2\,\mathbf j

\mathbf x(8.00\,\mathrm s)=(64.0\,\mathrm m)\,\mathbf i+(64.0\,\mathrm m)\,\mathbf j

so the particle is located at (<em>x</em>, <em>y</em>) = (64.0, 64.0).

Get the speed at <em>t</em> = 8.00 s by evaluating \mathbf v(t) at the same time:

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)\,\mathbf j

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(16.0\dfrac{\rm m}{\rm s}\right)\,\mathbf j

This is the <em>velocity</em> at <em>t</em> = 8.00 s. Get the <em>speed</em> by computing the magnitude of this vector:

\|\mathbf v(8.00\,\mathrm s)\|=\sqrt{\left(8.00\dfrac{\rm m}{\rm s}\right)^2+\left(16.0\dfrac{\rm m}{\rm s}\right)^2}=8\sqrt5\dfrac{\rm m}{\rm s}\approx17.9\dfrac{\rm m}{\rm s}

5 0
3 years ago
Neritic Sediments are deposited on the ocean floor in a sorted manor. In which order are the sediments ordered moving from the s
BaLLatris [955]
B <span> of Earth’s surface is covered by water. Very little or no light penetrates beyond a few hundred feet in water</span>
6 0
4 years ago
What happens to parallel light rays that strike a concave lens?
torisob [31]

Answer:

They diverge on refraction

Explanation:

When parallel light rays strike a concave lens, they will diverge that is they spread out .

Concave lens is also known as diverging lens, which means that when parallel rays of light strike on it, the lens spreads out the light rays ( that is it diverges the rays of light) that are refracted through it.

At the middle  of concave lens is thinner.  

When light is passes through the lens they diverge it or spread out.

The concave lens causes light rays to bend away or diverge from its axis since the concave lens is a diverging lens.  

5 0
3 years ago
As an airplane leaves the runway and goes into the air, has acceleration occurred?
malfutka [58]
A, yes because the plane is using air resistance and acceleration is increasing while it goes up. Although you don’t know speed, still yes.
6 0
3 years ago
Other questions:
  • The sediment deposited by glaciers is called __________ .
    13·1 answer
  • How do you measure potential and kinetic energy?
    8·1 answer
  • HELP PLEASE!!!
    9·1 answer
  • A 5.7 kg block attached to a spring executes simple harmonic motion on a frictionless horizontal surface. At time t = 0s, the bl
    11·1 answer
  • What is difference between static electricity and current elecity...???​
    11·2 answers
  • When converted to a household measurement, 9 kilograms is approximately equal to a
    15·1 answer
  • The Milky Way Galaxy is (a) another name for our solar system; (b) a small group of stars visible in our night sky; (c) a collec
    14·1 answer
  • Miguel is holding a 5 kg box.
    5·1 answer
  • Next, Stacy measures two quantities: the mass of each washer and the force that the washers exert on the force meter. In general
    8·1 answer
  • A pendulum in motion can either swing from side to side or turn in a continuous circle. The point at which it goes from one type
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!