True.
Because some people breathe less pollution and face lower risks of premature death and other serious health
Answer:
Their identity changes in both Reaction A and Reaction B.
First, we need to get the value of Ka:
when Ka = Kw / Kb
we have Kb = 1.8 x 10^-5
and Kw = 3.99 x 10^-16 so, by substitution:
Ka = (3.99 x 10^-16) / (1.8 x 10^-5) = 2.2 x 10^-11
by using the ICE table :
NH4+ + H2O →NH3 + H+
intial 0.013 0 0
change -X +X +X
Equ (0.013-X) X X
when Ka = [NH3][H+] / [NH4+]
by substitution:
2.2 x 10^-11 = X^2 / (0.013 - X) by solving this equation for X
∴X = 5.35 x 10^-7
∴[H+] = X = 5.35 x 10^-7
∴PH = - ㏒[H+]
= -㏒(5.35 x 10^-7)
= 6.27
Answer:
to the right (products side)
Explanation:
The equilibrium constant K describes the ratio between the concentration of products and reactants at equilibrium. For a general reaction:
a A + b B → c C + d D
The equilibrium constant expression is:
![K = \frac{[C]^{c} [D]^{d} }{[A]^{a} [B]^{b} }](https://tex.z-dn.net/?f=K%20%3D%20%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%5BD%5D%5E%7Bd%7D%20%20%7D%7B%5BA%5D%5E%7Ba%7D%20%5BB%5D%5E%7Bb%7D%20%20%7D)
A low value of K indicates that the concentration of products (C and D) is low in relation with the concentration of reactants (A and B).
Conversely, a high value of K indicated that the concentration of products is high compared with the concentration of reactants.
Since K = 6.4 × 10⁹ is a high value, the concentration of products is higher than the concentration of reactants at equilibrium. Thus, the position of the equilibrium is favored to the right.