Answer:
Less
Explanation:
The hydronium from the HCl is used to neutralize the bicarbonate in the baking soda. The hydronium is the acid and the bicarbonate ion is the base while the sodium and chloride ions are pH-neutral. Since theres a 1:1 mole ratio of hydronium to HCl and bicarbonate to sodium bicarbonate, it would require less HCl to neutralize a less concentration baking soda solution.
Answer:
I can give you the definition ... That might help cause I honestly don't kno the answer either ;-;
Explanation:
When used as a diacritic mark, the term dot is usually reserved for the interpunct, or to the glyphs 'combining dot above' and 'combining dot below' which may be combined with some letters of the extended Latin alphabets in use in Central European languages and Vietnamese.
Here is an example:
The dot product between a unit vector and itself is also simple to compute. In this case, the angle is zero and cosθ=1. Given that the vectors are all of length one, the dot products are i⋅i=j⋅j=k⋅k=1.
Answer:
<u>The temperature difference is</u> 
Explanation:
The formula that is to used is :
Δ
Δ
<em>where ,</em>
- <em>Δ
is the heat supplied in calories = 300cal</em> - <em>
is the mass of water taken = m (assumed)</em> - <em>Δ
is the change in temperature</em> - <em>
is the specific heat of water =
</em>
ΔT :

The limiting reactant when 5.6 moles of aluminium react with 6.2 moles of water is
water( H2O)
<u><em>Explanation</em></u>
The balanced equation is as below
2 Al +3 H2O → Al2O3 +3 H2
The mole ratio of Al :Al2O3 is 2:1 therefore the moles of Al2O3
= 5.6 x1/2 = 2.8 moles
The mole ratio of H2O: Al2O3 is 3:1 therefore the moles of Al2O3 produced
= 6.2 x1/3= 2.067 moles
since H2O yield less amount of Al2O3 , H2O is the limiting reagent.
Answer:
and
are hydrogen boding,
and
are ion-dipole forces.
Explanation: If the bond is formed between a metal and a non metal then it is known as ionic bond and ionic compounds have positive and negative ions and so they have ion-dipole forces. Aluminium chloride and Iron(III)bromide both are ionic as they have a bond between a metal and non metal and so both of these have ion-dipole forces.
Ammonia and ethanol both are polar molecules and we know that polar molecules have dipole-dipole forces.
A hydrogen bond could form if hydrogen is bonded with more electron negative atom(N, O or F).
In ammonia, H is bonded to N and in ethanol, H is bonded to O, so both of these molecules must have hydrogen bonding. Since hydrogen bond is stronger as compared to dipole - dipole forces, we will say that both ammonia and ethanol have hydrogen bonding.