Answer:
Ep = 3924 [J]
Explanation:
To calculate this value we must use the definition of potential energy which tells us that it is the product of mass by the acceleration of gravity by height.

where:
Ep = potential energy [J] (units of Joules)
m = mass = 40 [kg]
g = gravity acceleration = 9.81 [m/s²]
h = elevation = 10 [m]
![E_{p} =40*9.81*10\\E_{p} = 3924 [J]](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3D40%2A9.81%2A10%5C%5CE_%7Bp%7D%20%3D%203924%20%5BJ%5D)
Answer:
An ultra intense laser is one with which intensities greater than 1015 W cm-2 can be achieved.
Explanation:
This intensity, which was the upper limit of lasers until the invention of the Chirped Pulse Amplification, CPA technique, is the value around which nonlinear effects on the transport of radiation in materials begin to appear.
Currently, the most powerful lasers reach intensities of the order of 1021W cm-2 and powers of Petawatts, PW, in each pulse. This range of intensities has opened the door for lasers to a multitude of disciplines and scientific areas traditionally reserved for accelerators and nuclear reactors, applying as generators of high-energy electron, ion, neutron and photon beams, without the need for expensive infrastructure.