Answer:
2.19 N/m
Explanation:
A damped harmonic oscillator is formed by a mass in the spring, and it does a harmonic simple movement. The period of it is the time that it does one cycle, and it can be calculated by:
T = 2π√(m/K)
Where T is the period, m is the mass (in kg), and K is the damping constant. So:
2.4 = 2π√(0.320/K)
√(0.320/K) = 2.4/2π
√(0.320/K) = 0.38197
(√(0.320/K))² = (0.38197)²
0.320/K = 0.1459
K = 2.19 N/m
Answer:
y = 2.196 m
Explanation:
Mass, m = 76 kg
distance from axis of rotation, x = 0.38 m
Second Force, F = 129 N
moment arm of the second force, y = ?
Now, equating moments for the equilibrium
So,
m g × x = F x y
76 x 0.38 x 9.81 = 129 x y
y = 2.196 m
Hence, the length of the moment arm is equal to 2.196 m.
Answer:
Its 5 because of the equation
Explanation:
Thank You Merry christmas.
S= 1/2 x 182 x t = 1688.3
t = 1688.3 / 91
time = 18.55 seconds