Part A.
What we can do to solve this problem is to assume that
the acceleration of Bryan is constant so that the velocity function is linear.
The standard form of a linear function is in the form:
y = m x + b
or in this case:
v = m t + b
where v is velocity and t is time, b is the y –intercept of
the equation
The slope m can be calculated by:
m = (v2 – v1) / (t2 – t1)
m = (12 – 15) / (7 – 4)
m = -1
Since slope is negative therefore this means the cyclist
are constantly decelerating. The equation then becomes:
v = - t + b
Now finding for b by plugging in any data pair:
15 = - (4) + b
b = 19
So the complete equation is:
v = - t + 19
This means that the initial velocity of the cyclists at t
= 0 is 19 km / h.
Part B. What we can do to graph the equation is to
calculate for the values of v from t = 0 to 12, then plot all these values in
the Cartesian plane then connect the dots.
Answer:
5x = 5(10) = 50 inches
Step-by-step explanation:
Let x = length of shorter piece then
5x = length of the longer piece
.
x + 5x = 60
6x = 60
x = 10 inches (shorter piece)
.
Longer piece:
5x = 5(10) = 50 inches
Answer:
Step-by-step explanation:
REcall the following definition of induced operation.
Let * be a binary operation over a set S and H a subset of S. If for every a,b elements in H it happens that a*b is also in H, then the binary operation that is obtained by restricting * to H is called the induced operation.
So, according to this definition, we must show that given two matrices of the specific subset, the product is also in the subset.
For this problem, recall this property of the determinant. Given A,B matrices in Mn(R) then det(AB) = det(A)*det(B).
Case SL2(R):
Let A,B matrices in SL2(R). Then, det(A) and det(B) is different from zero. So
.
So AB is also in SL2(R).
Case GL2(R):
Let A,B matrices in GL2(R). Then, det(A)= det(B)=1 is different from zero. So
.
So AB is also in GL2(R).
With these, we have proved that the matrix multiplication over SL2(R) and GL2(R) is an induced operation from the matrix multiplication over M2(R).
Answer:
I can not see the image but if you write it I promise that I will answer it as quickly as possible
Step-by-step explanation: