To solve this problem it is only necessary to apply the kinematic equations of angular motion description, for this purpose we know by definition that,

Where,
Angular Displacement
Angular Acceleration
Angular velocity
Initial angular displacement
For this case we have neither angular velocity nor initial angular displacement, then

Re-arrange for 

Replacing our values,


Therefore the ANgular acceleration of the mass is 
<span>this may help you
As far as the field goes, the two charges opposite each other cancel!
So E = kQ / d² = k * Q / (d/√2)² = 2*k*Q / d² ◄
and since k = 8.99e9N·m²/C²,
E = 1.789e10N·m²/C² * Q / d² </span>
Answer:7 cm/s
Explanation:
Given
Particle move along curve

As it reaches the (2,3) its y coordinate is increasing at 14 cm/s
Differentiating y w.r.t time
Now at (2,3)

The meters per second
+1t a second / 2t
Answer:
75degree don't forget wind and gravity force pulling down