1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Grace [21]
3 years ago
12

Which molecules from food and air ends up with the cell in the body

Physics
1 answer:
ozzi3 years ago
4 0

Answer:

Hmm look it up

Explanation:

You might be interested in
Suppose that you are swimming in a river while a friend watches from the shore. In calm water, you swim at a speed of 1.25 m/s .
aliya0001 [1]

Answer: The observing friend will the swimmer moving at a speed of 0.25 m/s.

Explanation:

  • Let <em>S</em> be the speed of the swimmer, given as 1.25 m/s
  • Let S_{0} be the speed of the river's current given as 1.00 m/s.

  • Note that this speed is the magnitude of the velocity which is a vector quantity.
  • The direction of the swimmer is upstream.

Hence the resultant velocity is given as, S_{R} = S — S 0S_{0}

S_{R} = 1.25 — 1

S_{R} = 0.25 m/s.

Therefore, the observing friend will see the swimmer moving at a speed of 0.25 m/s due to resistance produced by the current of the river.

6 0
3 years ago
Una barra de aluminio que esta a 78 GRADOS CENTIGRADOS entra en contacto con una barra de cobre de la misma longitud y área que
stiks02 [169]

Answer:

Al llegar a su equilibrio térmico ambas barran tendrán una temperatura de 53 grados centígrados.

Explanation:

Dado que una barra de aluminio que está a 78 grados centígrados entra en contacto con una barra de cobre de la misma longitud y área que esta a 28 grados centígrados, y posteriormente se lleva acabo la transferencia de energía entre ambas barras llegando a su equilibrio térmico, para determinar la temperatura a la que ambas barras llegarán se debe realizar el siguiente cálculo:

(78 + 28) / 2 = X

106 / 2 = X

53 = X

Por lo tanto, al llegar a su equilibrio térmico ambas barran tendrán una temperatura de 53 grados centígrados.

8 0
3 years ago
An airliner arrives at the terminal, and its engines are shut off. The rotor of one of the engines has an initial clockwise angu
Ilia_Sergeevich [38]

(a) 1200 rad/s

The angular acceleration of the rotor is given by:

\alpha = \frac{\omega_f - \omega_i}{t}

where we have

\alpha = -80.0 rad/s^2 is the angular acceleration (negative since the rotor is slowing down)

\omega_f is the final angular speed

\omega_i = 2000 rad/s is the initial angular speed

t = 10.0 s is the time interval

Solving for \omega_f, we find the final angular speed after 10.0 s:

\omega_f = \omega_i + \alpha t = 2000 rad/s + (-80.0 rad/s^2)(10.0 s)=1200 rad/s

(b) 25 s

We can calculate the time needed for the rotor to come to rest, by using again the same formula:

\alpha = \frac{\omega_f - \omega_i}{t}

If we re-arrange it for t, we get:

t = \frac{\omega_f - \omega_i}{\alpha}

where here we have

\omega_i = 2000 rad/s is the initial angular speed

\omega_f=0 is the final angular speed

\alpha = -80.0 rad/s^2 is the angular acceleration

Solving the equation,

t=\frac{0-2000 rad/s}{-80.0 rad/s^2}=25 s

6 0
3 years ago
Describe a procedure that would increase the potential energy of two magnets if like poles are used. Explain why the energy of t
zalisa [80]

Answer:

If you apply a force to separate 2 opposite poles, the potential energy of the system increases.

5 0
2 years ago
The notes produced by a tuba range in frequency from approximately 45 Hz to 375 Hz. Find the possible range of wavelengths in ai
taurus [48]

Answer:

The possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.

Explanation:

Given that,

The notes produced by a tuba range in frequency from approximately 45 Hz to 375 Hz.

The speed of sound in air is 343 m/s.

To find,

The wavelength range for the corresponding frequency.

Solution,

The speed of sound is given by the following relation as :

v=f_1\lambda_1

Wavelength for f = 45 Hz is,

\lambda_1=\dfrac{v}{f_1}

\lambda_1=\dfrac{343}{45}=7.62\ m

Wavelength for f = 375 Hz is,

\lambda_2=\dfrac{v}{f_2}

\lambda_2=\dfrac{343}{375}=0.914\ m/s

So, the possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.

6 0
4 years ago
Other questions:
  • After a group of researchers conducts a new experiment that has never been conducted before, what is the best way for other scie
    6·2 answers
  • a student pushes a 40 in Block across the floor for a distance of 10 meters how much work was done to move the block A) 4j. B) 4
    5·1 answer
  • Explain why the car reaches a top speed even though the thrust Force remains constant at 3500N
    12·1 answer
  • Which forces tend to slow down an object
    8·1 answer
  • A child standing on the edge of a freely spinning merry-go-round moves quickly to the center. Which one of the following stateme
    10·1 answer
  • A farsighted woman breaks her current eyeglasses and is using an old pair whose refractive power is 1.570 diopters. Since these
    12·1 answer
  • Which description best explains why the view within the rectangle lens is different than the view outside the lens?
    15·1 answer
  • What is a solenoid
    6·2 answers
  • Protons are______<br> charged particles.
    8·2 answers
  • What is uniform motion ,?​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!