Answer:
C3H6 + Br2 → C3H6Br2
Explanation:
The reaction in which C3H6Br2 (1,2-Dibromopropane) is created is:
We can see that the only difference between the product (C3H6Br2) and the known reactant (C3H6) of the reaction is two bromine atoms (Br2). Br2 is diatomic bromine - a molecule we get after combining two bromine atoms. This compound is a red-brown liquid at room temperature, which means that that is the liquid described in your question.
The highest electronegativity is in the elements in the top left corner of the periodic table, and the lowest in the bottom right corner. Therefore, traveling up or to the left across the periodic table will increase the electronegativity
Answer:
The reaction is endothermic.
Yes, absorbed
3.06x10¹kJ are absorbed
Explanation:
In the reaction:
2HgO(s) → 2Hg(l) + O₂(g) ΔH = 182kJ
As ΔH >0,
<em>The reaction is endothermic</em>
<em />
As the reaction is endothermic, when the reaction occurs,
<em>the heat is absorbed.</em>
<em></em>
Now, based on the equation, when 2 moles of HgO (Molar mass: 216.59g/mol), 182kJ are absorbed.
72.8g are:
72.8g * (1mol / 216.59g) = 0.3361 moles HgO.
that absorb:
0.3361 moles HgO * (182kJ / 2 moles) =
<h3>3.06x10¹kJ are absorbed</h3>
1) An example of a compound machine could be a pair of Scissors. Their are two different simple machines in the Scissors which make up the compound machine. Both of them being a Lever, and a Fulcrum.
Hope this helps!
Answer:
The entropy of the final solution decreases, as the reaction disorder is less.
Explanation:
The higher the temperature, the greater the heat of the reaction and the greater the disorder it has, so the entropy will increase ... But this is not the case, since the solution cools, decreasing the entropy proportionally.