Well according to Newton’s first law of motion, a body will remain in the state of rest or linear motion provided that an *external force* has been applied. So no, a force doesn’t need to keep a body to remain in linear motion, because F=ma, during uniform linear motion velocity is constant, hence acceleration is zero, so F=0
Answer:
The work done on the box is 80 J.
Explanation:
Given that,
Weight of box = 40 N
Distance = 2 meter
We need to calculate the work done
Using formula of work done


Where, x = distance
mg = weight
Put the value into the formula



Hence, The work done on the box is 80 J.
Answer:
The loop penetrate 4 cm into the magnetic field.
Explanation:
Given that,
Width w= 5 cm
Length L= 10 cm
mass m = 40 g
Resistance R = 20 mΩ
Initial velocity = 1 m/s
Magnetic field = 2 T
We need to calculate the induced emf
Using formula of emf

Put the value into the formula


We need to calculate the current
Using Lenz's formula



We need to calculate the force
Using formula of force


Put the value into the formula


We need to calculate the acceleration
Using formula of acceleration

Put the value in to the formula


We need to calculate the distance
Using equation of motion





Hence, The loop penetrate 4 cm into the magnetic field.
Answer:
The graph with a more steeper slope
Explanation:
If the x axis represented time and the y axis represented speed the steeper the slope the more faster something was moving in a shorter amount of time. On the other hand a less steeper slope means an object is gradually picking up speed in a longer amount of time thus makeing it slower
HOPE THIS HELPED:)
The speed of sound on planet is 210 m/s.
<h3>
What is Oscillation?</h3>
Oscillation is the repeating or periodic change of a quantity around a central value or between two or more states, often in time. Alternating current and a swinging pendulum are two common examples of oscillation.
There are 3 main types of Oscillation –
- Free
- damped
- forced oscillation
f = frequency = 600 Hz
lambda = wavelength = 35 cm = 0.35 m
Now,
V = speed = f × lambda = 210 m/s
Hence, speed of sound on planet is 210 m/s.
to learn more about oscillation go to -
brainly.com/question/12622728
#SPJ4