Answer:
V = 0.0806 m/s
Explanation:
given data
mass quarterback = 80 kg
mass football = 0.43 kg
velocity = 15 m/s
solution
we consider here momentum conservation is in horizontal direction.
so that here no initial momentum of the quarterback
so that final momentum of the system will be 0
so we can say
M(quarterback) × V = m(football) × v (football) ........................1
put here value we get
80 × V = 0.43 × 15
V = 0.0806 m/s
In a series circuit, all of the components are connected in the same 'loop' and the current only has one direction/path it can flow through.
In the first three options, the current has multiple paths it can go through. So these three circuits are parallel and not series.
In the last option, the current only has one path where it can flow through, so that circuit is in series.
So Circuit <u>D </u>is a series circuit.
----------------------------------------
Answer
Circuit D
Answer:
ΔK = -6 10⁴ J
Explanation:
This is a crash problem, let's start by defining a system formed by the two trucks, so that the forces during the crash have been internal and the moment is preserved
initial instant. Before the crash
p₀ = m v₁ + M 0
final instant. Right after the crash
p_f = (m + M) v
p₀ = p_f
mv₁ = (m + M) v
v =
we substitute
v =
3
v = 1.0 m / s
having the initial and final velocities, let's find the kinetic energy
K₀ = ½ m v₁² + 0
K₀ = ½ 20 10³ 3²
K₀ = 9 10⁴ J
K_f = ½ (m + M) v²
K_f = ½ (20 +40) 10³ 1²
K_f = 3 10⁴ J
the change in energy is
ΔK = K_f - K₀
ΔK = (3 - 9) 10⁴
ΔK = -6 10⁴ J
The negative sign indicates that the energy is ranked in another type of energy
Answer:
B) I1 = 1680 kg.m^2 I2 = 1120 kg.m^2
C) V = 0.84m/s T = 29.92s
D) ω2 = 0.315 rad/s
Explanation:
The moment of inertia when they are standing on the edge:
where M is the mass of the merry-go-round.
I1 = 1680 kg.m^2
The moment of inertia when they are standing half way to the center:

I2 = 1120 kg.m^2
The tangencial velocity is given by:
V = ω1*R = 0.84m/s
Period of rotation:
T = 2π / ω1 = 29.92s
Assuming that there is no friction and their parents are not pushing anymore, we can use conservation of the angular momentum to calculate the new angular velocity:
I1*ω1 = I2*ω2 Solving for ω2:
ω2 = I1*ω1 / I2 = 0.315 rad/s