Answer:
6.1 x 10^-8 newtons
Explanation:
F = 8.98 *109 *1*1/3845000002
Because the temperature of the place its contained in is constantly changing, for example, if you put a room temperature item in the fridge it will become cold, or whatever the temperature you set your fridge to.
The correct answer is going to be <span>C, because in the nucleus of an atom there are protons and electrons; which can't move, and are surrounded by electrons on the electrical cloud</span>
Answer:3.87*10^-4
Explanation:
What is the decrease in mass, delta mass Xe , of the xenon nucleus as a result of this deca
We have been given the wavelength of the gamma ray, find the frequency using c = freq*wavelength.
C=f*lambda
3*10^8=f*3.44*10^-12
F=0.87*10^20 hz
Then with the frequency, find the energy emitted using equation
E=hf E = freq*Plank's constant
E=.87*10^20*6.62*10^-34
E=575.94*10^(-16)
With this energy, convert into MeV from joules.
With the energy in MeV, use E=mc^2 using c^2 = 931.5 MeV/u.
Plugging and computing all necessary numbers gives you
3.87*10^-4 u.
Every element is able to be recognized individually in many different ways. A very easy and common way is using light absorption also known as spectroscopy. Every atom has electrons, and these electrons like to stay in their lowest-energy configuration. However, when photons collide with an electron it can increase it to a higher energy level.. This is absorption, and each element’s electrons absorb light at specific wavelengths related to the difference between energy levels in that atom. But the electrons want to return to their original levels, so they don’t hold onto the energy for long. When they emit the energy, they release photons with exactly the same wavelengths of light that were absorbed in the first place. An electron can release this light in any direction, so most of the light is emitted in directions away from our line of sight. Therefore, a dark line appears in the spectrum at that particular wavelength.
Because the wavelengths at which absorption lines occur are unique for each element, astronomers can measure the position of the lines to determine which elements are present in a target. The amount of light that is absorbed can also provide information about how much of each element is present.