To solve this problem we will apply the concepts related to wave velocity as a function of the tension and linear mass density. This is

Here
v = Wave speed
T = Tension
= Linear mass density
From this proportion we can realize that the speed of the wave is directly proportional to the square of the tension

Therefore, if there is an increase in tension of 4, the velocity will increase the square root of that proportion
The factor that the wave speed change is 2.
The correct answer is:
<span>C: in the protons and neutrons of an atom
In fact, the nuclear energy refers to the binding energy of the nucleons (protons and neutrons) of an atom. The protons and the neutrons are held together by the strong nuclear interaction, one of the four fundamental forces of nature, and the energy associated to this interaction is called nuclear energy.
</span>
If "0.3 minute" is correct, then it's 9,543,272 Joules.
If it's supposed to say "0.3 SECOND", then the KE is 2,651 Joules.
Answer:
New volume of the baloon is 0.02325m^3
Explanation:
To answer this question we need to know the ideal gas law, which says:
p•V = n•R•T
p is pressure, V is volume, n is amount of substance (in moles), R is constant value and T is temperature.
Since it's stated that n and T are constant, and we know that R is a constant too, that means that p•V = constant value. Basically, that means that p1•V1 (pressure and volume before the pressure increase) equals to p2•V2 (pressure and volume after the pressure increase).
That means that:
100000 Pa • 0.0279 m^3 = 120000 Pa • V2. Next, V2= 100000•0.0279/120000. So, V2=0.02325m^3.