Answer:
The probability that a randomly chosen Ford truck runs out of gas before it has gone 325 miles is 0.0062.
Step-by-step explanation:
Let <em>X</em> = the number of miles Ford trucks can go on one tank of gas.
The random variable <em>X</em> is normally distributed with mean, <em>μ</em> = 350 miles and standard deviation, <em>σ</em> = 10 miles.
If the Ford truck runs out of gas before it has gone 325 miles it implies that the truck has traveled less than 325 miles.
Compute the value of P (X < 325) as follows:

Thus, the probability that a randomly chosen Ford truck runs out of gas before it has gone 325 miles is 0.0062.
Answer:
a) No. t < 0 is not part of the useful domain of the function
b) 2.0 seconds
Step-by-step explanation:
a) A graph of the function is shown below. It shows t-intercepts at t=-0.25 and t=2.0. We presume that t is measured forward from some event such as the ball being thrown or hit. The model's predicted ball location has no meaning prior to that event, when values of t are negative.
__
b) It is convenient to use a graphing calculator to find the t-intercepts. Or, the equation can be solved for h=0 any of several ways algebraically. One is by factoring.
h = 0 = -16t² +28t +8 . . . . . . . . . . . . the ball hits the ground when h = 0
0 = -4(4t² -7t -2) = -4(4t +1)(t -2)
This has t-intercepts where the factors are zero, at t=-1/4 and t=2.
The ball will hit the ground after 2 seconds.
The perimeter would be ≈ 36.797836892947.
Rounded would be about 37, or 36.8.
Hope this helps!!!!


Solving for P:
≈36.79784
Hope this helps!!
25 because it s a less common denominaor
Answer: 7
Step-by-step explanation:
They are alternate interior angle
2x + 5 = 3x -2
2x = 3x -7
-x = -7
x = 7