Answer:
a6,-3
b1,-2
c4,1
Step-by-step explanation:
The answer is: [C]: " ⁷/₆ " .
____________________________________
Note:
____________________________________
(5/3) - (1/2) = ? ;
____________________________________
The LCD (lowest common denominator) of "2 and 3" is "6" ;
So we need to rewrite EACH fraction in the problem as a fraction with "6" in the denominator ;
____________________________
(5/3) = (?/6) ? ; (6÷3=2) ; (5/3) = (5*2)/(3*2) = 10/6 ;
____________________________
(1/2) = (?/6) ? ; (6÷2=3) ; (1/2) = (1*3)/(2*3) = 3/6 ;
____________________________
Rewrite the problem: " (5/3) - (1/2) " ; as:
____________________________
10/6 - 3/6 ;
____________________________________________
10/6 - 3/6 = (10 - 3) / 6 = (7/6) = 1 ⅙ .
____________________________________________
The answer is: " ⁷/₆ " ; or, write as: " 1 ⅙ " ; which corresponds to:
______________________________________________________
Answer choice: [C]: " ⁷/₆ " .
____________________________________________
Answer:
Therefore the value of y(1)= 0.9152.
Step-by-step explanation:
According to the Euler's method
y(x+h)≈ y(x) + hy'(x) ....(1)
Given that y(0) =3 and step size (h) = 0.2.
![y'(x)= x^2y(x)-\frac12y^2(x)](https://tex.z-dn.net/?f=y%27%28x%29%3D%20x%5E2y%28x%29-%5Cfrac12y%5E2%28x%29)
Putting the value of y'(x) in equation (1)
![y(x+h)\approx y(x) +h(x^2y(x)-\frac12y^2(x))](https://tex.z-dn.net/?f=y%28x%2Bh%29%5Capprox%20y%28x%29%20%2Bh%28x%5E2y%28x%29-%5Cfrac12y%5E2%28x%29%29)
Substituting x =0 and h= 0.2
![y(0+0.2)\approx y(0)+0.2[0\times y(0)-\frac12 (y(0))^2]](https://tex.z-dn.net/?f=y%280%2B0.2%29%5Capprox%20y%280%29%2B0.2%5B0%5Ctimes%20y%280%29-%5Cfrac12%20%28y%280%29%29%5E2%5D)
[∵ y(0) =3 ]
![\Rightarrow y(0.2)\approx 2.7](https://tex.z-dn.net/?f=%5CRightarrow%20y%280.2%29%5Capprox%202.7)
Substituting x =0.2 and h= 0.2
![y(0.2+0.2)\approx y(0.2)+0.2[(0.2)^2\times y(0.2)-\frac12 (y(0.2))^2]](https://tex.z-dn.net/?f=y%280.2%2B0.2%29%5Capprox%20y%280.2%29%2B0.2%5B%280.2%29%5E2%5Ctimes%20y%280.2%29-%5Cfrac12%20%28y%280.2%29%29%5E2%5D)
![\Rightarrow y(0.4)\approx 2.7+0.2[(0.2)^2\times 2.7- \frac12(2.7)^2]](https://tex.z-dn.net/?f=%5CRightarrow%20y%280.4%29%5Capprox%20%202.7%2B0.2%5B%280.2%29%5E2%5Ctimes%202.7-%20%5Cfrac12%282.7%29%5E2%5D)
![\Rightarrow y(0.4)\approx 1.9926](https://tex.z-dn.net/?f=%5CRightarrow%20y%280.4%29%5Capprox%201.9926)
Substituting x =0.4 and h= 0.2
![y(0.4+0.2)\approx y(0.4)+0.2[(0.4)^2\times y(0.4)-\frac12 (y(0.4))^2]](https://tex.z-dn.net/?f=y%280.4%2B0.2%29%5Capprox%20y%280.4%29%2B0.2%5B%280.4%29%5E2%5Ctimes%20y%280.4%29-%5Cfrac12%20%28y%280.4%29%29%5E2%5D)
![\Rightarrow y(0.6)\approx 1.9926+0.2[(0.4)^2\times 1.9926- \frac12(1.9926)^2]](https://tex.z-dn.net/?f=%5CRightarrow%20y%280.6%29%5Capprox%20%201.9926%2B0.2%5B%280.4%29%5E2%5Ctimes%201.9926-%20%5Cfrac12%281.9926%29%5E2%5D)
![\Rightarrow y(0.6)\approx 1.6593](https://tex.z-dn.net/?f=%5CRightarrow%20y%280.6%29%5Capprox%201.6593)
Substituting x =0.6 and h= 0.2
![y(0.6+0.2)\approx y(0.6)+0.2[(0.6)^2\times y(0.6)-\frac12 (y(0.6))^2]](https://tex.z-dn.net/?f=y%280.6%2B0.2%29%5Capprox%20y%280.6%29%2B0.2%5B%280.6%29%5E2%5Ctimes%20y%280.6%29-%5Cfrac12%20%28y%280.6%29%29%5E2%5D)
![\Rightarrow y(0.8)\approx 1.6593+0.2[(0.6)^2\times 1.6593- \frac12(1.6593)^2]](https://tex.z-dn.net/?f=%5CRightarrow%20y%280.8%29%5Capprox%20%201.6593%2B0.2%5B%280.6%29%5E2%5Ctimes%201.6593-%20%5Cfrac12%281.6593%29%5E2%5D)
![\Rightarrow y(0.6)\approx 0.8800](https://tex.z-dn.net/?f=%5CRightarrow%20y%280.6%29%5Capprox%200.8800)
Substituting x =0.8 and h= 0.2
![y(0.8+0.2)\approx y(0.8)+0.2[(0.8)^2\times y(0.8)-\frac12 (y(0.8))^2]](https://tex.z-dn.net/?f=y%280.8%2B0.2%29%5Capprox%20y%280.8%29%2B0.2%5B%280.8%29%5E2%5Ctimes%20y%280.8%29-%5Cfrac12%20%28y%280.8%29%29%5E2%5D)
![\Rightarrow y(1.0)\approx 0.8800+0.2[(0.8)^2\times 0.8800- \frac12(0.8800)^2]](https://tex.z-dn.net/?f=%5CRightarrow%20y%281.0%29%5Capprox%20%200.8800%2B0.2%5B%280.8%29%5E2%5Ctimes%200.8800-%20%5Cfrac12%280.8800%29%5E2%5D)
![\Rightarrow y(1.0)\approx 0.9152](https://tex.z-dn.net/?f=%5CRightarrow%20y%281.0%29%5Capprox%200.9152)
Therefore the value of y(1)= 0.9152.
Answer:
30
Step-by-step explanation:
6*5=30