T is in seconds (s)
<span>2pi is dimensionless </span>
<span>L is in meters (m) </span>
<span>g is in meters per second squared (m/s^2) </span>
<span>so you can write the equation for the period of the simple pendulum in its units... </span>
<span>s=sqrt(m/(m/s^2)) </span>
<span>simplify</span>
<span>s=sqrt(m*s^2*1/m) cancelling the m's </span>
<span>s=sqrt(s^2) </span>
<span>s=s </span>
<span>therefore the dimensions on the left side of the equation are equal to the dimensions on the right side of the equation.</span>
Answer: 3. F1 = F2
Explanation:
According to <u>Newton's law of Gravitation</u>, the force
exerted <u>between two bodies</u> or objects of masses
and
and separated by a distance
is equal to the product of their masses divided by the square of the distance:
(1)
Where
is the gravitational constant
Now, in the especific case of the Earth and the satellite, where the Earth has a mass
and satellite a mass
, being both separated a distance
, the force exerted by the Earth on the satellite is:
(2)
And the force exerted by the satellite on the Earth is:
(3)
As we can see equations (2) and (3) are equal, hence the magnitude of the gravitational force is the same for both:

Jasper, because he developed friendships playing with everyone last year,
Thats the answer
Answer
given,
y(x,t)= 2.20 mm cos[( 7.02 rad/m )x+( 743 rad/s )t]
length of the rope = 1.33 m
mass of the rope = 3.31 g
comparing the given equation from the general wave equation
y(x,t)= A cos[k x+ω t]
A is amplitude
now on comparing
a) Amplitude = 2.20 mm
b) frequency =


f = 118.25 Hz
c) wavelength




d) speed


v = 105.84 m/s
e) direction of the motion will be in negative x-direction
f) tension


T = 27.87 N
g) Power transmitted by the wave


P = 0.438 W
Iron...................... hope this helpes