Answer:
Force that acted on the body was F = 13 N
Explanation:
If once accelerated, the body covers 60 meters in 6 seconds, then its velocity is 60/6 m/s = 10 m/s
When the force was acting (for 10 seconds) the object accelerated from rest (initial velocity vi = 0) to 10 m/s (its final velocity). therefore we can use the kinematic equation for the velocity in an accelerated motion given by:

which in our case becomes;

and we can solve for the acceleration as:
a = 10/10 m/s^2 = 1 m/s^2
Therefore the force acting on the body, based on Newton's 2nd Law expression: F = m * a is:
F = 13 kg * 1 m/s^2 = 13 N
The answer is B. The wave is very long.
Answer:
I might be able to help, but I also might not. I need to check if I can get you the answer.
Explanation:
Answer:
Latent heat, along with birds, ride those rising columns of air. This brings up a third and the ultimate mechanism by which the Earth's heat escapes into space, which is electromagnetic radiation. Every object, including the Earth's surface, absorbs and radiates heat electromagnetically
Explanation:
I LITERALLY JUST COPIED AND PASTED THIS FROM GOOGLE..i dont understand anything from it since im not on this topic but hope this help a little....i got it from google ..not my own work
Answer:
The speed of the police car is 294 m/s
Explanation:
Given;
frequency of the siren in air, f = 280 Hz
speed of sound in air, v = 343 m/s
Determine the wavelength of the sound in air to the stationary car:
v = fλ
where;
λ is wavelength of the sound
λ = v/f
λ = 343 / 280
λ = 1.225 m
Now, determine the speed at which the police car is approaching the stationary car;
The actual frequency of the police car, F = 240 Hz
V = Fλ
Where;
V is speed of the police car
λ is the distance between the police car and the stationary car, (wavelength)
V = 240 x 1.225
V = 294 m/s
Therefore, the speed of the police car is 294 m/s