Hope this helps! Please mark as brainliest!
Answer / Explanation
It is worthy to note that the question is incomplete. There is a part of the question that gave us the vale of V₀.
So for proper understanding, the two parts of the question will be highlighted.
A ball is thrown straight up from the edge of the roof of a building. A second ball is dropped from the roof a time of 1.19s later. You may ignore air resistance.
a) What must the height of the building be for both balls to reach the ground at the same time if (i) V₀ is 6.0 m/s and (ii) V₀ is 9.5 m/s?
b) If Vo is greater than some value Vmax, a value of h does not exist that allows both balls to hit the ground at the same time.
Solve for Vmax
Step Process
a) Where h = 1/2g [ (1/2g - V₀)² ] / [(g - V₀)²]
Where V₀ = 6m/s,
We have,
h = 4.9 [ ( 4.9 - 6)²] / [( 9.8 - 6)²]
= 0.411 m
Where V₀ = 9.5m/s
We have,
h = 4.9 [ ( 4.9 - 9.5)²] / [( 9.8 - 9.5)²]
= 1152 m
b) From the expression above, we got to realise that h is a function of V₀, therefore, the denominator can not be zero.
Consequentially, as V₀ approaches 9.8m/s, h approaches infinity.
Therefore Vₙ = V₀max = 9.8 m/s
<h2>When two object P and Q are supplied with the same quantity of heat, the temperature change in P is observed to be twice that of Q. The mass of P is half that of Q. The ratio of the specific heat capacity of P to Q</h2>
Explanation:
Specific heat capacity
It is defined as amount of heat required to raise the temperature of a substance by one degree celsius .
It is given as :
Heat absorbed = mass of substance x specific heat capacity x rise in temperature
or ,
Q= m x c x t
In above question , it is given :
For Q
mass of Q = m
Temperature changed =T₂/2
Heat supplied = x
Q= mc t
or
X=m x C₁ X T₁
or, X =m x C₁ x T₂/2
or, C₁=X x 2 /m x T₂ (equation 1 )
For another quantity : P
mass of P =m/2
Temperature= T₂
Heat supplied is same that is : X
so, X= m/2 x C₂ x T₂
or, C₂=2X/m. T₂ (equation 2 )
Now taking ratio of C₂ to c₁, We have
C₂/C₁= 2X /m.T₂ /2X /m.T₂
so, C₂/C₁= 1/1
so, the ratio is 1: 1
Answer:
Option A
The drag force goes up by a factor of 4
Explanation:
Fact:
Drag force is directly proportional to the square of the velocity of a moving object
Therefore, when drag force pushes opposite to the motion as one rides a bicycle, the magnitude of drag force increases by a factor of 4