Answer:

Explanation:
We can use the Ideal Gas Law to calculate the density of the gas.
pV = nRT
n = m/M Substitute for n
pV = (m/M)RT Multiply both sides by M
pVM = mRT Divide both sides by V
pM = (m/V) RT
ρ = m/V Substitute for m/V
pM = ρRT Divide each side by RT

Data:
p = 1.00 bar
M = 49 g/mol
R = 0.083 14 bar·L·K⁻¹mol⁻¹
T = 0 °C = 273.15 K
Calculation:
ρ = (1.00 × 49)/(0.083 14 × 273.15) = 2.2 g/L
The density of the gas is
.
<u>Answer: </u>The correct answer is Option B.
<u>Explanation:</u>
First law of thermodynamics states that the energy can neither be destroyed not be formed but it can only be transformed from one form to another.
Here, the internal energy of the system is being transformed to the heat energy and the work done by the system. The equation used to represent first law of thermodynamic is:

where,
represents the internal energy of the system.
Q = heat released or absorbed by the system.
w = work done by or on the system.
Hence, the correct answer is Option B.
With what KClO3 reacts with if it is by temperature
2KClO3===》KCl + KClO + O2
A law stating that the elements are listed in the order of their atomic number
Answer:
What is the specific heat for the aluminum wire?
0.82
What is the specific heat for the steel wire?
0.47
What is the specific heat for the lead pellets?
0.25
Explanation: