Answer: Because it's a combination of chemicals, vodka doesn't freeze at the same temperature as either water or alcohol. Of course, vodka will freeze, but not at the temperature of an ordinary freezer. This is because vodka contains enough alcohol to lower the freezing point of water below the -17°C of your typical freezer.
Explanation: .......
We need to use the following formula
Δ


n= 4 moles
F= constant= 96500C/mol
let's plug in the values.
ΔG= -(4)(96500)(0.24)=
-92640 J or -92.6 kJ
Answer:
a) the minimun of acetic anhydride required for the reaction is 2.175 g (CH3CO)2O
b) V acetic anhydride = 2.010 mL
Explanation:
C6H4OHCOOH + (CH3CO)2O ↔ C9H8O4 + C2H4O2
⇒ mol salicylic acid = 2.94 g C6H4OHCOOH * ( mol C6H4OHCOOH / 138.121 g ) = 0.0213 mol C6H4OHCOOH
⇒ mol acetic anhydride = 0.0213 mol C6H4OHCOOH * ( mol (CH3CO)2O / mol C6H4OHCOOH ) = 0.0213 mol (CHECO)2O
⇒ g acetic anhydride = 0.0213 mol * ( 102.1 g/mol ) = 2.175 g CH3CO)2O
b) V = 2.175 g (CH3CO)2 * ( mL / 1.082 g ) = 2.010 mL (CH3CO)2O
Answer:
NaOBr (or) Na⁺ ⁻OBr
Explanation:
The Oxo-Acids of Bromine are as follow,
Hypobromous Acid = HOBr
Bromous Acid = HOBrO
Bromic Acid = HBrO₃
Perbromic Acid = HBrO₄
When these acids are converted to their conjugate bases their names are as follow,
Hypobromite = ⁻OBr
Bromite = ⁻OBrO
Bromate = ⁻OBrO₂
Perbromate = ⁻OBrO₃
According to rules, the positive part of ionic compound is named first and the negative part is named second. So, Sodium Hypobromite has a chemical formula of Na⁺ ⁻OBr or NaOBr.