If no frictional work is considered, then the energy of the system (the driver at all positions is conserved.
Let
position 1 = initial height of the diver (h₁), together with the initial velocity (v₁).
position 2 = final height of the diver (h₂) and the final velocity (v₂).
The initial PE = mgh₁ and the initial KE = (1/2)mv₁²
where g = acceleration due to gravity,
m = mass of the diver.
Similarly, the final PE and KE are respectively mgh₂ and (1/2)mv₂².
PE in position 1 is converted into KE due to the loss in height from position 1 to position 2.
Therefore
(KE + PE) ₁ = (KE + PE)₂
Evaluate the given answers.
A) The total mechanical energy of the system increases.
FALSE
B) Potential energy can be converted into kinetic energy but not vice versa.
TRUE
C) (KE + PE)beginning = (KE + PE) end.
TRUE
D) All of the above.
FALSE
Find the velocity of the object after one second.
v = vo + at
v = (0 m/s) + (9.8 m/s^2)(1 s)
v = 9.8 m/s
Now, using that, you can find the displacement in that one second between 1 and 2.
d = vot + (1/2)at^2
d = (9.8 m/s)(1 s) + (1/2)(9.8 m/s^2)(1 s)^2
d = 14.7 m
Answer:
d. The hammer falls with a constant acceleration
Explanation:
Since gravity is the only thing that is acting on the hammer as it falls and gravity is a form of acceleration then acceleration of 9.81m/s² which is gravity is the correct answer.
Answer:
Q = 2687130 J
Explanation:
m = mass of block of ice = 5 kg
= Initial temperature of ice block = - 27 °C
= final temperature of water = 35 °C
= specific heat of ice = 2108 J/(Kg °C)
= Latent heat of fusion of ice = 334000 J/kg
= specific heat of water = 4186 J/(Kg °C)
Heat added is given as


