Answer:
scientists will use absolute dating to find how old a fossil exactly is.
Again I think you did not give the right constants. So I would use the correct constants for mass of moon and distance from earth to moon.
<span>The formula for force of attraction between any two bodies in the universe
F = GMm / r^2. (Newton's Universal law of Gravitation).
G = Universal gravitational constant, G = 6.67 * 10 ^ -11 Nm^2 / kg^2.
M = Mass of Earth. = 5.97 x 10^24 kg.
m = mass of moon = 7.34 x 10^22 kg.
r = distance apart, between centers = in this case it is the distance from Earth to the Moon
= 3.8 x 10^8 m.
(Sorry I could not assume with the values you gave, they are wrong, and if we use them we would be insulting Physics).
So F = ((6.67 * 10 ^ -11)*(5.97 x 10^24)*(7.34 * 10^22)) / (3.8 x 10^8)^2.
Punch it all up in your calculator.
I used a Casio 991 calculator, it should be one of the best in the world.Really lovely calculator, that has helped me a lot in computations like this. I am thankful for the Calculator.
F = 2.0240 * 10^ 20 N.
So that's our answer.
Hurray!!</span>
Answer: 0.56 m/s
Explanation:
Hi, to answer this question we have to apply the formula of the conservation of momentum.
m1 v1 = m2 v2 (because the system is stationary at the beginning)
Where:
m1 = mass of the astronaut
v1= velocity of the astronaut
m2= mass of the satellite
v2= velocity of the satellite
Replacing with the values given and solving:
86 kg (2.35m/s) = 360 kg v2
202.1 kgm/s=360kg v2
202.1kgm/s /360kg =v2
v2 = 0.56 m/s
Feel free to ask for more if needed or if you did not understand something.
Answer:
7 miles northeast is the because it has both magnitude and direction .
Answer:
F = −10093.41 N
Explanation:
Given that,
Mass of a baseball, m = 143 g = 0.143 kg
Initial speed of the baseball, u = +38.8 m/s
The hitter's bat is in contact with the ball for 1.20 ms and then travels straight back to the pitcher's mound at a speed of 45.9 m/s, v = -45.9 m/s
We need to find the average force exerted on the ball by the bat. So, Force is given by :

a is acceleration

So, the average force exerted on the ball by the bat has a magnitude of 10093.41 N.