Answer:
v = 22.54 mph.
Explanation:
Given that,
Distance moved, d = 200 m
Time, t = 19.8 s
We need to find the runner's average speed.
We know that,
1 mile = 1609.34 m
200 m = 0.124 miles
19.8 seconds = 0.0055 h
So,
Speed = distance/time

So, the runner's average speed is 22.54 mph.
Answer:
a) wet marble , dry marble, newspaper, and towel
Answer:
The mass of a single paper is approximately 0.047 lb/paper which in SI Units is approximately 21.77 g/paper
Explanation:
The given information on the size and the weight of paper are;
The mass of a box of 500 sheets of paper = 24 lb
The number of sheets in the paper = 500 sheets
The dimensions of the paper = 17 in. × 22 in., which is equivalent to 43.18 cm × 55.88 cm
The mass of a single paper = The mass of the box of paper/(The number of sheets of paper present in the box)
The mass of a single paper = 24 lb/500 = 0.047 lb/paper
Given that 1 lb = 453.6 g, we have;
0.047 lb/paper = 0.047 lb/paper×453.6 g/(lb) = 21.77 g/paper
The mass of a single paper = 0.047 lb/paper = 21.77 g/paper.
Answer:
Initial velocity will be 1.356 m/sec
Explanation:
Let the initial speed = u
Angle at which rubber band is launched = 37°
Horizontal component of initial velocity 
Time is given as t = 1.20 sec
Distance in horizontal direction = 1.30 m
We know that distance = speed × time
So time 


So initial velocity will be 1.356 m/sec