1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iogann1982 [59]
3 years ago
6

a father pulls his young daughter on a sled (where the combined mass of his daughter and the sled are 40 kg) with a constant vel

ocity up a snowy hill that is inclined at 14 to the horizontal. a) if the coefficient of kinetic friction between the sled's runners and the snow is 0.15, what is the tension force of the rope on which the father pulls
Physics
1 answer:
dem82 [27]3 years ago
3 0

Answer:

Explanation:

We are not told what angle the pull rope is to any other reference. That could make a huge difference in the result.

If we ASSUME that the rope pulls parallel to the slope

Then , if T is rope tension

                                  F = ma

T - mgsinθ - μmgcosθ = m(0)

                                 T = mg(sinθ + μcosθ)

                                 T = 40(9.8)(sin14 + 0.15cos14)

                                 T = 151.88677... 150 N

If the rope pulls the sled at a positive angle relative to the slope, As one might expect from an adult holding the rope, then the tension will be increased because only the Tension portion parallel to the slope causes motion in that direction, but will be decreased because the Normal force, and therefore the friction force, of the slope on the sled will be decreased.

You might be interested in
An electric dipole of dipole moment 'p' is placed in the position of stable equilibrium in a uniform field of intensity 'E'. The
larisa86 [58]

Answer:

Torque by electric dipole = pEcos thita

5 0
4 years ago
Galileo started modern science because he started using ? Rather than speculation
Eva8 [605]
By using the telescope
4 0
3 years ago
A pendulum is made up of a small sphere of mass 0.500 kg attached to a string of length 0.950 m. The sphere is swinging back and
Semenov [28]

Answer:

W = 0.842 J

Explanation:

To solve this exercise we can use the relationship between work and kinetic energy

         W = ΔK

In this case the kinetic energy at point A is zero since the system is stopped

         W = K_f                (1)

now let's use conservation of energy

starting point. Highest point A

          Em₀ = U = m g h

Final point. Lowest point B

         Em_f = K = ½ m v²

energy is conserved

         Em₀ = Em_f

         mg h = K

to find the height let's use trigonometry

at point A

            cos 35 = x / L

            x = L cos 35

so at the height is

            h = L - L cos 35

            h = L (1-cos 35)

we substitute

           K = m g L (1 -cos 35)

we substitute in equation 1

           W = m g L (1 -cos 35)

let's calculate

           W = 0.500 9.8 0.950 (1 - cos 35)

           W = 0.842 J

7 0
3 years ago
A horizontal spring with spring constant 130 N/m is compressed 17 cm and used to launch a 2.8 kg box across a frictionless, hori
olasank [31]

Explanation:

The given data is as follows.

        k = 130 N/m,       \Delta x = 17 cm = 0.17 m   (as 1 m = 100 cm)

     mass (m) = 2.8 kg

When the spring is compressed then energy stored in it is as follows.

             Energy = \frac{1}{2}kx^{2}

Now, spring energy gets converted into kinetic energy when the box is launched.

So,    \frac{1}{2}kx^{2} = \frac{1}{2}mv^{2}

   \frac{1}{2} \times 130 \times (0.17)^{2} = \frac{1}{2} \times 2.8 \times v^{2}

          v^{2} = \frac{3.757}{2.8}

                     = 1.34

                v = 1.15 m/sec

Now,

           Frictional force = \mu \times mg

                                    = 0.15 \times 2.8 \times 9.8

                                    = 4.116 N

Also,  Kinetic energy = work done by friction

           \frac{1}{2}mv^{2} = F_{f} \times d

           \frac{1}{2} \times 2.8 \times (1.15)^{2} = 4.116 \times d

             1.8515 = 4.116 \times d

                 d = 0.449 m

Thus, we can conclude that the box slides 0.449 m across the rough surface before stopping.

8 0
3 years ago
A man is standing on the edge of a 20.0 m high cliff. He throws a rock horizontally with an initial velocity of 10.0 m/s.
kherson [118]

Answer:

<em>a. The rock takes 2.02 seconds to hit the ground</em>

<em>b. The rock lands at 20,2 m from the base of the cliff</em>

Explanation:

Horizontal motion occurs when an object is thrown horizontally with an initial speed v from a height h above the ground. When it happens, the object moves through a curved path determined by gravity until it hits the ground.

The time taken by the object to hit the ground is calculated by:

\displaystyle t=\sqrt{\frac{2h}{g}}

The range is defined as the maximum horizontal distance traveled by the object and it can be calculated as follows:

\displaystyle d=v.t

The man is standing on the edge of the h=20 m cliff and throws a rock with a horizontal speed of v=10 m/s.

a,

The time taken by the rock to reach the ground is:

\displaystyle t=\sqrt{\frac{2*20}{9.8}}

\displaystyle t=\sqrt{4.0816}

t = 2.02 s

The rock takes 2.02 seconds to hit the ground

b.

The range is calculated now:

\displaystyle d=10\cdot 2.02

d = 20.2 m

The rock lands at 20,2 m from the base of the cliff

5 0
3 years ago
Other questions:
  • The force is proportional to what measurement
    15·1 answer
  • If you could travel to a star 25 light-years away and return to earth at nearly the speed of light, how much time would elapse o
    11·2 answers
  • A wire runs left to right and carries a current in the direction shown. What is the direction of the magnetic field at point Z?
    11·2 answers
  • Help me answer this please!
    12·1 answer
  • Two forces are acting on a 2.0 kg object that moves with acceleration 6.0 m/s2 in the positive y-direction. If one of the forces
    7·1 answer
  • A carpenter builds an exterior house wall with a layer of wood 3.1 cm thick on the outside and a layer of Styrofoam insulation 2
    14·1 answer
  • A student drove to the university from her home and noted that the odometer reading of her car increased by 12.0 km. The trip to
    13·1 answer
  • 1.the student measures the mass of a piece of metal.its mass is 146g.
    11·1 answer
  • How many meters are there in 1865 cm
    13·2 answers
  • Kingda Ka has a maximum speed of 57.2 m/s. Determine the height of the hill on this roller coaster. Explain to get full credit,
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!