I attached the document with the answers and work with the formulas. Since the formulas and fractions don't work very well with this site (especially the pi symbol, they should fix that).
:)
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark">
docx
</span>
The integer number that represents the changing in his account balance from beginning to end is of -20.
<h3>Which numbers belong to the set of integer numbers?</h3>
Non-decimal numbers, either positive or negative numbers, also zero, belong to the set, which can be represented by:
Z = {..., -3, -2, -1, 0, 1, 2, 3, ...}
A change can be represented by the <u>final value subtracted by the initial value</u>. For this problem, we have that:
- The initial balance is of $20.
- The final balance is of $0.
Hence the change in the balance is:
0 - 20 = -20.
And the integer is -20.
More can be learned about integer numbers are brainly.com/question/17405059
#SPJ1
Starting off with the polynomial in standard form would be extremely difficult, but we can construct one fairly easily with the zeroes we've been given.
We know from the given zeroes that our function has the value 0 when x = 1, x = -2, and x = 2. Manipulating each equation, we can rewrite them as x - 1 = 0, x + 2 = 0, and x - 2 = 0. To construct our polynomial, we simply use all three of the expressions on the left side of the equation as factors and multiply them together, obtaining:

Notice that we can easily obtain each our three zeroes by dividing both sides by the two other factors. From here, we just need to expand the left-hand side of the equation. I'll show the work required here:
=0\\ (x^2-x+2x-2)(x-2)=0\\ (x^2+x-2)(x-2)=0\\ (x^2+x-2)x-(x^2+x-2)2=0\\ x^3+x^2-2x-(2x^2+2x-4)=0\\ x^3+x^2-2x-2x^2-2x+4=0\\ x^3+(x^2-2x^2)+(-2x-2x)+4=0\\ x^3-x^2-4x+4=0\\](https://tex.z-dn.net/?f=%28x-1%29%28x%2B2%29%28x-2%29%3D0%5C%5C%0A%5Cbig%5B%28x-1%29x%2B%28x-1%292%5Cbig%5D%28x-2%29%3D0%5C%5C%0A%28x%5E2-x%2B2x-2%29%28x-2%29%3D0%5C%5C%0A%28x%5E2%2Bx-2%29%28x-2%29%3D0%5C%5C%0A%28x%5E2%2Bx-2%29x-%28x%5E2%2Bx-2%292%3D0%5C%5C%0Ax%5E3%2Bx%5E2-2x-%282x%5E2%2B2x-4%29%3D0%5C%5C%0Ax%5E3%2Bx%5E2-2x-2x%5E2-2x%2B4%3D0%5C%5C%0Ax%5E3%2B%28x%5E2-2x%5E2%29%2B%28-2x-2x%29%2B4%3D0%5C%5C%0Ax%5E3-x%5E2-4x%2B4%3D0%5C%5C)
So, in standard form, our cubic polynomial would be
Answer:
700
Step-by-step explanation: