Answer:
identical atom in which an electron moves from the first to the third shell.
Atoms may occupy different energy states. The energy states are discrete, i.e. they occur at specific values only. Therefore an atom can only move to a new energy level if it absorbs or emits an amount of energy that exactly corresponds to the difference between two energy levels.
The lowest possible energy level that the atom can occupy is called the ground state. This is the energy state that would be considered normal for the atom.
An excited state is an energy level of an atom, ion, or molecule in which an electron is at a higher energy level than its ground state.
An electron is normally in its ground state, the lowest energy state available. After absorbing energy, it may jump from the ground state to a higher energy level, called an excited state.
Answer:
14.33 g
Explanation:
Solve this problem based on the stoichiometry of the reaction.
To do that we need the molecular weight of the masses involved and then calculate the number of moles, find the limiting reagent and finally calculate the mass of AgCl.
2 AgNO₃ + CaCl₂ ⇒ Ca(NO₃)₂ + 2 AgCl
mass, g 6.97 6.39 ?
MW ,g/mol 169.87 110.98 143.32
mol =m/MW 0.10 0.06 0.10
From the table above AgNO₃ is the limiting reagent and we will produce 0.10 mol AgCl which is a mass :
0.10 mol x 143.32 g/mol = 14.33 g
Silicon is a popular semi-conductor. The process of doping either creates an excess or lack of electrons. In the case of silicon, the dopant is arsenic which has greater valence electron than silicon. Arsenic then donates an electron resulting to an excess of electrons. A new type or better type of semi-conductor is created. Silicon conduct greater electricity.
The best answer is the last option.
Answer:
add
Explanation:
add 100 and 200 and that is your answer
Answer:
C. 1 cubic foot of loose sand
Explanation:
For many objects having equal volume , surface area will be maximum
of the object which has spherical shape .
But when a sphere is broken into tiny small spheres , total surface area of all the small spheres will be more than surface area of big sphere .
Hence among the given option , surface area of loose sand will have greatest surface area . Loose sand is equivalent to small spheres .