Answer:
hello can you follow me
Explanation:
used in fire extinction, blasting rubber, foaming rubber and plastic
Answer is: the average atomic mass is 232.
ω₁ = 20% ÷ 100%.
ω₁ = 0.20.
ω₂ = 80% ÷ 100%.
ω₂ = 0.80.
Ar₁ = 120 (number of protons) + 120 (number of neutrons).
Ar₁ = 240.
Ar₂ = 120 + 110
.
Ar₂ = 230.
Average atomic mass of atoms of bolognium =
Ar₁ · ω₁ + Ar₂ · ω₂.
Average atomic mass of atoms of bolognium = 240 · 0.2 + 230 · 0.8.
Average atomic mass of atoms of bolognium = 48 + 184.
Average atomic mass of atoms of bolognium = 232.
Answer:
See explanation
Explanation:
In this case, we have to remember the meaning of the nomenclature "18:2Δ9,12". Where 18 is the <u>number of carbon atom</u>s, 2 is the <u>number of double bonds,</u> and the numbers successive to Δ "delta" the position of the double bonds <u>starting</u> to count from the carboxylic -COOH end of the molecule.
In other words, the main functional group is a <u>carboxylic acid</u>. We have a total of 18 carbons. Additionally, we have 2 double bonds. On carbons 9 and 12.
Lets see figure 1
I hope it helps!
What was the question here?
Answer: Rate of decomposition of acetaldehyde in a solution is 
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
For a reaction : 
![Rate=k[A]^x](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5Ex)
k= rate constant
x = order of the reaction = 2


Thus rate of decomposition of acetaldehyde in a solution is