Technically, the answer should be 3.30 * 10^23 grams. But I think you mean either molecules, atoms, moles or grams of Ni2I6 with that number of molecules .
1 mole of Ni2 I6 = 6.02 * 10^23 molecules
x [mole] = 3.30 * 10^23 molecules
1/x = 6.02 * 10^23 / 3.30 * 10^23 Cancel the 10^23 on the right side
1/x = 6.02 / 3.30 Cross multiply
3.30 = 6.02 x Divide by 6.02
3.30 / 6.02 = x
x = 0.548 moles
what to do from here?
1 mole of Ni2I6 is
2 * Ni = 2 * 59 = 118 grams
6 * I = 6 * 131 = <u>786 grams</u>
Total = 904 grams
Set up a proportion.
<u>1 mole Ni2I6 </u> = <u>904 grams</u>
0.548 moles = x
1/0.548 = 904/x Cross multiply
x = 0.548 * 904
x = 495.4 grams of Ni2I6 <<<<<< Answer.
The chemical equilibrium will shift to the left.
Since NH4+ ions are a product of the original reaction, increasing their concentration will shift the equilibrium toward the reactants.
Answer:
b
Explanation:
[H3O+] = 10-pH = 10-3.4 ≅ 3.981 x 10^-4 moles/liter
<span>PbO
Let's look at each of the 4 compounds and see what's needed.
PbO.
* Oxygen has a valance shell that's missing 2 electrons and wants to get those 2 elections. Lead donates them, so you have a Lead (II) ions. This is a correct choice.
PbCl4
* Chlorine wants to grab 1 electron to fill it's valance shell and Lead donates that election. However, there's 4 chlorine atoms and every one of them wants and electron, and lead is donating all 4 of the desired electrons making the Lead (IV) ion. So this is a bad choice.
Pb2O
* Oxygen still wants 2 electrons and gets them from the lead. But there's 2 lead atoms and each of them donates 1 election making for 2 Lead(I) ions. So this too is a bad choice.
Pb2S
* Sulfur is in the same column of the periodic table as oxygen and if this compound were to exist would have similar properties as Pb2O and would have Lead(I) ions. So this is a bad choice.</span>
Answer:
What is the reaction quotient, Q, for this system when [N2] = 2.00 M, [H2] = 2.00 M, and [NH3] = 1.00 M at 472°C?
A. 0.0625
How does Q compare to Keq?
B. Q < Keq
Explanation: