Answer:
jijji[ojooooooooooooooooooooooooo
Explanation:
kjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
First we have to find Ka1 and Ka2
pKa1 = - log Ka1 so Ka1 = 0.059
pKa2 = - log Ka2 so Ka2 = 6.46 x 10⁻⁵
Looking at the values of equilibrium constants we can see that the first one is really big compared to second one. so, the pH will be affected mainly by the first ionization of the acid.
Oxalic acid is H₂C₂O₄
H₂C₂O₄ ⇄ H⁺ + HC₂O₄⁻
0.0356 M 0 0
0.0356 - x x x
Ka1 =
![\frac{[H^+][HC2O4^-]}{[H2C2O4]}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BH%5E%2B%5D%5BHC2O4%5E-%5D%7D%7B%5BH2C2O4%5D%7D%20)
= x² / 0.0356 - x
x = 0.025 M
pH = - log [H⁺] = - log (0.025) = 1.6
the answer is in the picture
Answer:
Reptiles, marsupials, dogs, and cats
Explanation:
Answer:
3–methyl–2–butanol
Explanation:
To name the compound, we must:
1. Identify the functional group.
2. Give the functional group of the compound the lowest possible count.
3. Locate the longest continuous carbon chain. This gives the parent name of the compound.
4. Identify the substituent group attached.
5. Give the substituent group the lowest possible count.
6. Combine the above to get the name of the compound.
Now, let us obtain the name of the compound.
1. The functional group of the compound is Alcohol i.e —OH.
2. The functional group is located at carbon 2.
3. The longest continuous carbon chain is carbon 4 i.e butane. But the presence of the functional group i.e OH will replace the –e in butane with –ol. Therefore, the compound is butanol.
4. The substituent group attached is methyl i.e CH3.
5. The substituent group is located at carbon 3.
6. Therefore, the name of the compound is:
3–methyl–2–butanol.