1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ann [662]
4 years ago
11

Which conditions create a thunder storm? Select three responses.

Chemistry
1 answer:
zhannawk [14.2K]4 years ago
5 0

I believe the answer is: high humidity, warm air temperature, and low air.

You might be interested in
plez hurry Which is an important safety precaution that should be taken during a tornado? Stay away from doors and windows. Move
jeka57 [31]

Answer: stay away from doors and windows.

Explanation:

to aviod geting hit by glass

5 0
3 years ago
Read 2 more answers
What is the chemical symbol of the terminal atom in the lewis structure of OH- ?
NARA [144]

Answer:

kindly refer to the picture attached

Explanation:

Have a great day . keep smiling

7 0
2 years ago
What is the limiting reactant when 5.6 moles of aluminum react with 6.2 moles of water?
Arlecino [84]

here we have to choose the limiting reactant in the given unbalanced reaction.

The 5.6 moles of aluminum will be the limiting reactant in this reaction.

The reagent or reactant which is totally consume in a reaction is called the limiting reagent or reactant.

The unbalanced reaction is Al + H₂O → Al₂O₃ + H₂

On balancing 2Al + 3H₂O = Al₂O₃ + 3H₂

As we can see that 2 moles of aluminium (Al) reacts with 3 moles of water (H₂O). Thus 5.6 moles of Al reacts with\frac{2}{3}×5.6 = 3.733 moles of water.

Henceforth the 5.6 moles aluminum will be the limiting reactant as it is totally consume, but only 3.733 moles of water is reacting and the rest 6.2 - 3.733 = 2.467 moles of water will remain excess in this reaction.

Thus the aluminum will be the limiting reactant.

6 0
3 years ago
✨(Giving brainliest)✨ Please do question 3-4
Neko [114]

Answer:

B

Explanation:

6 0
3 years ago
Read 2 more answers
Consider the titration of a 20.0-mL sample of 0.105 M HC2H3O2 with 0.125 M NaOH. Determine each quantity. a. the initial pH b. t
Oksi-84 [34.3K]

Answer:

Explanation:

Given that:

Concentration of HC_2H_3O_2 \  (M_1) = 0.105 M

Volume of  HC_2H_3O_2 \  (V_1) = 20.0 mL

Concentration of NaOH (M_2) = 0.125 M

The  chemical reaction can be expressed as:

HC_2H_3O_2_{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O_{(l)}

Using the ICE Table to determine the equilibrium concentrations.

          HC_2 H_3 O_2 _{(aq)} + H_2O _{(l) } \to C_2 H_3O_2^- _{(aq)} + H_3O^+_{ (aq)}

I            0.105                                     0                  0

C              -x                                         +x                +x

E            0.105 - x                                  x                  x

K_a = \dfrac{[C_2H_5O^-_2][H_3O^+]}{[HC_2H_3O_2]}

K_a = \dfrac{(x)(x)}{(0.105-x)}

Recall that the ka for HC_2H_3O_2= 1.8 \times 10^{-5}

Then;

1.8 \times 10^{-5} = \dfrac{(x)(x)}{(0.105 -x)}

1.8 \times 10^{-5} = \dfrac{x^2}{(0.105 -x)}

By solving the above mathematical expression;

x = 0.00137 M

H_3O^+ = x = 0.00137  \ M \\ \\  pH = - log [H_3O^+]  \\ \\  pH = - log ( 0.00137 )

pH = 2.86

Hence, the initial pH = 2.86

b)  To determine the volume of the added base needed to reach the equivalence point by using the formula:

M_1 V_1 = M_2 V_2

V_2= \dfrac{M_1V_1}{M_2}

V_2= \dfrac{0.105 \ M \times 20.0 \ mL }{0.125 \ M}

V_2 = 16.8 mL

Thus, the volume of the added base needed to reach the equivalence point = 16.8 mL

c) when pH of 5.0 mL of the base is added.

The Initial moles of HC_2H_3O_2 = molarity × volume

= 0.105  \ M \times 20.0 \times 10^{-3} \ L

= 2.1 \times 10^{-3}

number of moles of 5.0 NaOH = molarity × volume

number of moles of 5.0 NaOH = 0.625 \times 10^{-3}

After reacting with 5.0 mL NaOH, the number of moles is as follows:

                    HC_2 H_3 O_2 _{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O{ (l)}

Initial moles   2.1*10^{-3}       0.625 * 10^{-3}           0                      0

F(moles) (2.1*10^{-3} - 0.625 \times 10^{-3})    0      0.625 \times 10^{-3}         0.625 \times 10^{-3}

The pH of the solution is then calculated as follows:

pH = pKa + log \dfrac{[base]} {[acid]}

Recall that:

pKa for HC_2H_3O_2=4.74

Then; we replace the concentration with the number of moles since the volume of acid and base are equal

∴

pH = 4.74 + log \dfrac{0.625 \times 10^{-3}}{1.475 \times 10^{-3}}

pH = 4.37

Thus, the pH of the solution after the addition of 5.0 mL of NaOH = 4.37

d)

We need to understand that the pH at 1/2 of the equivalence point is equal to the concentration of the base and the acid.

Therefore;

pH = pKa = 4.74

e) pH at the equivalence point.

Here, the pH of the solution is the result of the reaction in the (C_2H_3O^-_2) with H_2O

The total volume(V) of the solution = V(acid) + V(of the base added to reach equivalence point)

The total volume(V) of the solution = 20.0 mL + 16.8 mL

The total volume(V) of the solution = 36.8 mL

Concentration of (C_2H_3O^-_2) = moles/volume

= \dfrac{2.1 \times 10^{-3} \ moles}{0.0368 \ L}

= 0.0571 M

Now, using the ICE table to determine the concentration of H_3O^+;

             C_2H_5O^-_2 _{(aq)} + H_2O_{(l)} \to HC_2H_3O_2_{(aq)} + OH^-_{(aq)}

I              0.0571                                0                      0

C              -x                                       +x                     +x

E             0.0571 - x                             x                       x

Recall that the Ka for HC_2H_3O_2 = 1.8 \times 10^{-5}

K_b = \dfrac{K_w}{K_a} = \dfrac{1.0\times 10^{-14}}{1.8 \times 10^{-5} }  \\ \\ K_b = 5.6 \times 10^{-10}

k_b = \dfrac{[ HC_2H_3O_2] [OH^-]}{[C_2H_3O^-_2]}

5.6 \times 10^{-10} = \dfrac{x *x }{0.0571 -x}

x = [OH^-] = 5.6 \times 10^{-6} \ M

[H_3O^+] = \dfrac{1.0 \times 10^{-14} }{5.6 \times 10^{-6} }

[H_3O^+] =1.77 \times 10^{-9}

pH =-log  [H_3O^+]   \\ \\  pH =-log (1.77 \times 10^{-9}) \\ \\ \mathbf{pH = 8.75 }

Hence, the pH of the solution at equivalence point = 8.75

f) The pH after 5.09 mL base is added beyond (E) point.

             HC_2 H_3 O_2 _{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O{ (l)}

Before                             0.0021              0.002725         0

After                                   0                     0.000625        0.0021

[OH^-] = \dfrac{0.000625 \ moles}{(0.02 + 0.0218 )  \ L}

[OH^-] = \dfrac{0.000625 \ moles}{0.0418 \ L}

[OH^-] =  0.0149 \ M

From above; we can determine the concentration of H_3O^+ by using the following method:

[H_3O^+] = \dfrac{1.0 \times 10^{-14} }{0.0149}

[H_3O^+] = 6.7 \times 10^{-13}

pH = - log [H_3O^+]

pH = -log (6.7 \times 10^{-13} )

pH = 12.17

Finally, the pH of the solution after adding 5.0 mL of NaOH beyond (E) point = 12.17

3 0
3 years ago
Other questions:
  • How would show that lemon and tomato contains acids?
    13·1 answer
  • Cold working of a material... a) Is conducted at room temperature. b) Is conducted inside a refrigerator. c) Is conducted below
    14·1 answer
  • How does a new antibiotic kills pathogens without detectable resistance apply to agriculture?
    9·1 answer
  • BRAINLIESTTT ASAP!!! PLEASE HELP ME :)
    12·1 answer
  • What was the principal use of calcium sulfate in hospitals
    13·1 answer
  • PLS HELP. My older brother received a ticket for driving 80 miles per hour. This information describes my brother's
    15·1 answer
  • Name the complex ion [al(cn)6]3−. the oxidation number of aluminum is +3.
    6·2 answers
  • If a temperature increase from 21.0 ∘c to 35.0 ∘c triples the rate constant for a reaction, what is the value of the activation
    13·1 answer
  • Can someone please help me
    12·1 answer
  • Give an example of liquid diffusing into a solid​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!