Answer: The correct answer is absorbed.
Explanation:
Bond formation is a type of exothermic process. In these reactions when two atoms come close to each other, energy is released in this process.
On the other hand, in the breaking of bond, energy is required because the atoms are to be separated from each other. This is a type of endothermic process. So, the energy must be absorbed.
Hence, the correct answer is absorbed.
Answer:
Gravity!
Explanation:
She kicked it up. The ball comes back due to gravity.
Nice riddle!
Have a great day!!
Answer:
A.) the transfer of energy through a solid, such as the Earth’s crust
I hope this helps! ^-^
The deltaHrxn = -243 kJ/mol the deltaHrxn of CH4(methane) = -802 kJ/mol
The fuel that yields more energy per mole is METHANE. The negative sign merely signifies the release of energy. Thus, 802 kJ/mol is greater than 243 kJ/mol.
The fuel that yields more energy per gram is HYDROGEN. Here is the computation:
deltaHrxn = (-243 kJ/mol)(1 mol/2.016 g H2) <span>= -120.535714286 kJ/g or -121 kJ/g
</span>deltaHrxn of CH4(methane) = (-802 kJ/mol)(1 mol/16.04 g)
<span>= -50 kJ/g
</span>
As discussed the negative sign serves as the symbol of released energy. Thus, 121 is greater than 50.
Answer:
Both B and D are correct.
Explanation:
B + H₂O ⇌ BH⁺ + OH⁻
If you add more products, the position of equilibrium will shift to the left to decrease their concentrations (Le Châtelier's Principle). The concentration of reactants will increase, but the equilibrium concentrations of products will also be higher than they were initially.
A is wrong. The equilibrium constant is a constant. It does not change when you change concentrations.
C is wrong. Per Le Châtelier's Principle, the concentrations must change when you ad a stress to a system at equilibrium.
(This is a poorly-worded question. "They" are probably expecting answer D.)