Answer: 2.02 J/g°C
Explanation:
To find the heat capacity, we have to manipulate the equation for heat.
q=mCΔT becomes C=q/(mΔT) to find heat capacity. Since we are given our values, we can plug in to find C.

*Please ignore the capital A in front of the °C. In order to have ° in the equaiton, the A pops up.

In this problem, we need to use the ideal gas law. The following is the formula used in ideal gas law: PV = nRT, where n refers to the moles and R is the gas constant.
Given
P = 10130.0 kPa
V = 50 L
T = 300 degree celcius + 273.15 = 573.15 K
R = 8.314 L. kPa/K.mol
Solution
To get the moles which represent the "n" in the formula, we need to rearrange the equation.
PV = nRT PV
---- ------ ---> n = --------
RT RT RT
10130.0 kPa x 50 L
n= ---------------------------------------------
8.314 L. kPa/K.mol x 573.15 K
506,500
= ----------------------------
4,765.17 mol K
=106.29 mol Ar
So the moles of argon gas is 106.29 moles
Answer:
a) 1.61 mol
b) Al is limiting reactant
c) HBr is in excess
Explanation:
Given data:
Moles of Al = 3.22 mol
Moles of HBr = 4.96 mol
Moles of H₂ formed = ?
What is limiting reactant =
What is excess reactant = ?
Solution:
Chemical equation:
2Al + 2HBr → 2AlBr + H₂
Now we will compare the moles:
Al : H₂
2 : 1
3.22 : 1/2×3.22 = 1.61 mol
HBr : H₂
2 : 1
4.96 : 1/2×4.96 = 2.48 mol
The number of moles of H₂ produced by Al are less it will be limiting reactant while HBr is present in excess.
Moles of H₂ :
Number of moles of H₂ = 1.61 mol
A mixture, because it contains multiple dyes and compounds
hopefully i could help ;)
<span>Vinegar and baking soda react to form a new gaseous substance.
</span><span>The reaction between Vinegar and baking soda has been one of the most common examples of Chemical Reaction.</span>