Answer:
Early-warning systems are essential in the case of hurricanes, severe thunderstorms, tornadoes, tsunamis, and volcanoes. All of these can wreak havoc! Let’s take a look at how meteorologists forecast these events and how early-warning systems can help us protect ourselves if we are in their paths.
Explanation:
A condensation reaction is described to be a reaction wherein two molecules form an even larger product and consequently produces a smaller molecule as a by-product. For example, when two amino acids are combined, a dipeptide bond is formed. As a result, 1 molecule of water is produced as a by-product.
Answer:
(iv) (A) is false, but (R) is true.
Explanation:
It is not true that carbon has a strong tendency to either lose or gain electrons to attain noble gas configuration. Carbon is a member of group 14, it is the first member of the group and carbon is purely a non metal. Only metals metals can loose electrons to attain the noble gas configuration. Moreover, carbon does not participate in ionic bonding so it does not gain electrons to attain the noble gas configuration.
However, carbon participates in covalent bonding where it is covalently bonded to four other chemical species using its four outermost electrons. Carbon forms covalent bonds in which four electrons are shared with other chemical species.
First, you need to find the mass of 1 mol of sugar. Mass, or molar mass, can simply be found by adding the masses of the individual elements. These are given to you on the periodic table.

12 x 12.011 grams (molar mass of Carbon) = 144.132 g
22 x 1.008 grams (molar mass of Hydrogen) = 22.176 g
11 x 15.999 grams (molar mass of Oxygen) = 175.989 g
Add all of the pieces together.
144.132 g + 22.176 g + 175.989 g = 342.297 grams
So, if one mole has 342.297 grams, then 7.35 of that amount will be your answer.
342.297 g/mol x 7.35 mol = 2,515.88 grams
Answer:
5.702 mol K₂SO₄
General Formulas and Concepts:
<u>Atomic Structure</u>
- Reading a Periodic Table
- Compounds
- Moles
<u>Stoichiometry</u>
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
[Given] 993.6 g K₂SO₄
[Solve] moles K₂SO₄
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of K: 39.10 g/mol
[PT] Molar Mass of S: 32.07 g/mol
[PT] Molar mass of O: 16.00 g/mol
Molar Mass of K₂SO₄: 2(39.10) + 32.07 + 4(16.00) = 174.27 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 4 sig figs.</em>
5.7015 mol K₂SO₄ ≈ 5.702 mol K₂SO₄