Low clouds
Stratus clouds are uniform grayish clouds that often cover the sky. Usually no precipitation falls from stratus clouds, but they may drizzle. When a thick fog “lifts,” the resulting clouds are low stratus. Nimbostratus clouds form a dark gray, “wet” looking cloudy layer associated with continuously falling rain or snow. They often produce light to moderate precipitation.
Middle clouds
Clouds with the prefix “alto” are middle-level clouds that have bases at 6,500 to 23,000 feet up. Altocumulus clouds are made of water droplets and appear as gray, puffy masses, sometimes rolled out in parallel waves or bands. These clouds on a warm, humid summer morning often mean thunderstorms by late afternoon. Altostratus clouds, gray or blue-gray, are made up of ice crystals and water droplets. They usually cover the sky. In thinner areas of them, the sun may be dimly visible as a round disk. Altostratus clouds often form ahead of storms that produce continuous precipitation.
High clouds
Cirrus clouds are thin, wispy clouds blown by high winds into long streamers. They are considered “high clouds,” forming at more than 20,000 feet. They usually move across the sky from west to east and generally mean fair to pleasant weather. Cirrostratus, thin, sheetlike clouds that often cover the sky, are so thin the sun and moon can be seen through them. Cirrocumulus clouds appear as small, rounded white puffs. Small ripples in the cirrocumulus sometimes resemble the scales of a fish, creating what is sometimes called a “mackerel sky.”
Vertical clouds
Cumulus clouds are puffy and can look like floating cotton. The base of each is often flat and may be only 330 feet above ground. The top has rounded towers. When the top resembles a cauliflower head, it is called “cumulus congestus.” These grow upward and if they continue to grow vertically can develop into a giant cumulonimbus, a thunderstorm cloud, with dark bases no more than 1,000 feet above ground and extending to more than 39,000 feet. Tremendous energy is released by condensation of water vapor in a cumulonimbus. Lightning, thunder and violent tornadoes are associated with them.
The answer is: a relatively large electron cloud.
Atom is composed of the nucleus and the electron cloud.
Protons (positive particles) and neutrons (neutral particles) are in the nucleus of an atom and electrons (negative particles) are in the electron cloud.
Nucleus is in the centar of the atom atom and electron cloud is surrounding it.
Atoms have their mass concentrated in a very small nucleus.
Answer: 58.44g
Explanation: The molar mass of NaCl is 58.44g.
Answer:
a. 1810mL
Explanation:
When conditions for a gas change under constant pressure (and the number of molecules doesn't change), it follows Charles' Law:
where the temperatures must be measured in Kelvin
To convert from Celsius to Kelvin, add 273, or use the equation: 
For this problem, one must also recall that standard temperature is 0°C (or 273K).
So,
, and
.

![\dfrac{(1532.7[mL])}{(273[K])}=\dfrac{V_2}{(322.4[K])}](https://tex.z-dn.net/?f=%5Cdfrac%7B%281532.7%5BmL%5D%29%7D%7B%28273%5BK%5D%29%7D%3D%5Cdfrac%7BV_2%7D%7B%28322.4%5BK%5D%29%7D)
![\dfrac{(1532.7[mL])}{(273[K\!\!\!\!\!{-}])}(322.4[K\!\!\!\!\!{-}] )=\dfrac{V_2}{(322.4[K]\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!{----})}(322.4[K]\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!{----})](https://tex.z-dn.net/?f=%5Cdfrac%7B%281532.7%5BmL%5D%29%7D%7B%28273%5BK%5C%21%5C%21%5C%21%5C%21%5C%21%7B-%7D%5D%29%7D%28322.4%5BK%5C%21%5C%21%5C%21%5C%21%5C%21%7B-%7D%5D%20%29%3D%5Cdfrac%7BV_2%7D%7B%28322.4%5BK%5D%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%7B----%7D%29%7D%28322.4%5BK%5D%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%7B----%7D%29)
![1810.04571428[mL]=V_2](https://tex.z-dn.net/?f=1810.04571428%5BmL%5D%3DV_2)
Adjusting for significant figures, this gives ![V_2=1810[mL]](https://tex.z-dn.net/?f=V_2%3D1810%5BmL%5D)
Answer: The temperature of the gas reduced to 400K.
Explanation:
Stated that ; The pressure remains the same, that is initial and final pressure equals 1atm.
Applying Charles Law

Initial volume V1 = 1
Final volume V2 = 1/2 (halved)
Initial temperature T1 =800K
Final temperature T2 = ?
(1/800) = (1/2)/T2
T2 = 800/2
T= 400K
Therefore, when the volume is halved, the temperature reduced also to half ( 400K)