Answer:
He needs to add 4 mL of the 0.5 M solution to 6 mL of water.
Answer:
12.8 g of
must be withdrawn from tank
Explanation:
Let's assume
gas inside tank behaves ideally.
According to ideal gas equation- 
where P is pressure of
, V is volume of
, n is number of moles of
, R is gas constant and T is temperature in kelvin scale.
We can also write, 
Here V, T and R are constants.
So,
ratio will also be constant before and after removal of
from tank
Hence, 
Here,
and 
So, 
So, moles of
must be withdrawn = (0.66 - 0.26) mol = 0.40 mol
Molar mass of
= 32 g/mol
So, mass of
must be withdrawn = 
Answer:
The question isn't worded properly, but if 1 or 2 are DECREASED, the frequency of collisions of specified molecules will decrease.
Explanation:
Catalysts only facilitate reaction once molecules collide. Increased temperature makes molecules move more, and thus collide more. For concentration, if there are more molecules in the same amount of room/liquid, there will be more collisions because there are more of the molecules to collide.
The correct answer is 2.53 g of precipitate, BaCrO4.
<u>Answer:</u>
The percent composition of this compound is 94%
<u>Explanation:</u>
The reaction can be formed as






Based on no. of iron reacted,

n = m/M

% composition of
= 
= 94%