0.01 cubic meters
Hope this helps
Since
21.2 g H2O was produced, the amount of oxygen that reacted can be obtained
using stoichiometry. The balanced equation was given: 2H₂ + O₂ → 2H₂O and
the molar masses of the relevant species are also listed below. Thus, the
following equation is used to determine the amount of oxygen consumed.
Molar mass of H2O = 18
g/mol
Molar mass of O2 = 32
g/mol
21.2 g H20 x 1 mol
H2O/ 18 g H2O x 1 mol O2/ 2 mol H2O x 32 g O2/ 1 mol O2 = 18.8444 g O2
<span>We then determine that
18.84 g of O2 reacted to form 21.2 g H2O based on stoichiometry. It is
important to note that we do not need to consider the amount of H2 since we can
derive the amount of O2 from the product. Additionally, the amount of H2 is in
excess in the reaction.</span>
Although 1013.25 mb (760 mm Hg) is considered to be the standard atmospheric pressure at sea level, it does not mean that the pressure at this level has this value, actually this being 1011 mb.
Answer:
- <u>2.59 × 10⁻⁷ m = 259 nm</u>
Explanation:
You need to calculate the wavelength of a photon with an energy equal to 463 kJ/mol, which is the energy to break an oxygen-hydrogen atom.
The energy of a photon and its wavelength are related by the Planck - Einstein equation:
Where:
- h = Planck constant (6.626 × 10⁻³⁴ J . s) and
- ν = frequency of the photon.
And:
Where:
- c = speed of light (3.00 × 10⁸ m/s in vacuum)
- λ = wavelength of the photon
Thus, you can derive:
Solve for λ:
Before substituting the values, convert the energy, 463 kJ/ mol, to J/bond
- 463 kJ/ mol × 1,000 J/kJ × 1 mol / 6.022 × 10 ²³ atom × 1 bond / atom
= 7.69×10²³ J / bond
Substitute the values and use the energy of one bond:
- λ = 6.626 × 10⁻³⁴ J . s × 3.00 × 10⁸ m/s / 7.69×10²³ J = 2.59 × 10⁻⁷ m
The wavelength of light is usually shown in nanometers:
- 2.59 × 10⁻⁷ m × 10⁹ nm / m = 259 nm ← answer