0.37 is greater ,because if you will will transfer the 1/3 in decimal you will get 0.333333333.
Answer:
So, 23, 29, 31, 37, 41, 43 and 47 these are the prime numbers between 20 and 50.
Step-by-step explanation:
plz mark me brainliest
I believe that it is 75%, because if you take 20*.50= 10*.50=5= 75% of your original price. I think..
Answer:
The angles of A and B are 45 degrees. This is true because the other angle is a right angle (90 degrees) and if you are making a triangle the degrees of the sides have to = 180 to be a complete triangle. The triangle is complete, so I took 180 – 90 = 90 ÷ 2 = 45.
The angle of C is 115 because it is a supplementary angle. A supplementary angle is an angle that has two angles with a sum of 180 degrees and 180 – 65 = 115The angles of A and B are 45 degrees. This is true because the other angle is a right angle (90 degrees) and if you are making a triangle the degrees of the sides have to = 180 to be a complete triangle. The triangle is complete, so I took 180 – 90 = 90 ÷ 2 = 45.
The angle of C is 115 because it is a supplementary angle. A supplementary angle is an angle that has two angles with a sum of 180 degrees and 180 – 65 = 115The angles of A and B are 45 degrees. This is true because the other angle is a right angle (90 degrees) and if you are making a triangle the degrees of the sides have to = 180 to be a complete triangle. The triangle is complete, so I took 180 – 90 = 90 ÷ 2 = 45.
The angle of C is 115 because it is a supplementary angle. A supplementary angle is an angle that has two angles with a sum of 180 degrees and 180 – 65 = 115The angles of A and B are 45 degrees. This is true because the other angle is a right angle (90 degrees) and if you are making a triangle the degrees of the sides have to = 180 to be a complete triangle. The triangle is complete, so I took 180 – 90 = 90 ÷ 2 = 45.
The angle of C is 115 because it is a supplementary angle. A supplementary angle is an angle that has two angles with a sum of 180 degrees and 180 – 65 = 115The angles of A and B are 45 degrees. This is true because the other angle is a right angle (90 degrees) and if you are making a triangle the degrees of the sides have to = 180 to be a complete triangle. The triangle is complete, so I took 180 – 90 = 90 ÷ 2 = 45.
The angle of C is 115 because it is a supplementary angle. A supplementary angle is an angle that has two angles with a sum of 180 degrees and 180 – 65 = 115The angles of A and B are 45 degrees. This is true because the other angle is a right angle (90 degrees) and if you are making a triangle the degrees of the sides have to = 180 to be a complete triangle. The triangle is complete, so I took 180 – 90 = 90 ÷ 2 = 45.
The angle of C is 115 because it is a supplementary angle. A supplementary angle is an angle that has two angles with a sum of 180 degrees and 180 – 65 = 115The angles of A and B are 45 degrees. This is true because the other angle is a right angle (90 degrees) and if you are making a triangle the degrees of the sides have to = 180 to be a complete triangle. The triangle is complete, so I took 180 – 90 = 90 ÷ 2 = 45.
The angle of C is 115 because it is a supplementary angle. A supplementary angle is an angle that has two angles with a sum of 180 degrees and 180 – 65 = 115
Step-by-step explanation:
The area of the polygons compare to π in the way that as
more angles and sides are added to a polygon the polygon becomes closer to a
circle; the perimeter slowly changes to circumference. Π is used to find the
area and circumference of a circle, so as polygons come closer to becoming circles
π becomes more strongly associated to the polygon. You can even use π to find
the approximate area of a circle if you use the same formula (as you would to
find the area of a circle) on a polygon. Another way to go about it is like
this…
You can find the area of a circle if you know the circle’s
circumference by using these steps:
<span>1. Divide the
circumference by π to find the diameter of the circle.</span>
<span>2. Divide the
diameter by 2 to find the radius of the circle.</span>
<span>3. Now that you
have the radius you can use the formula Area= πr2 to find the area of the
circle.</span>