What is the simplified form of the following expression 7(^3 sqrt 2x)-3(^3 sqrt16x)-3(^3 sqrt 8x)?
2 answers:
To solve this problem:
You have the following expression given in the problem above: 7∛(2x)-3∛(16x)-3∛(8x)
When you simplify it, you obtain the following form:
(∛x)(∛2)-(6∛x)
When you factor ∛x, you obtain:
∛x(∛2-6)
Therefore, as you can see, the answer is: ∛x(∛2-6)
Answer:
![\sqrt[3]{2x} -6\sqrt[3]{x}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D)
Step-by-step explanation:
7(^3 sqrt 2x)-3(^3 sqrt16x)-3(^3 sqrt 8x)
![7\sqrt[3]{2x} -3\sqrt[3]{16x} -3\sqrt[3]{8x}](https://tex.z-dn.net/?f=7%5Csqrt%5B3%5D%7B2x%7D%20-3%5Csqrt%5B3%5D%7B16x%7D%20-3%5Csqrt%5B3%5D%7B8x%7D)
LEts simplify each term
![7\sqrt[3]{2x}=\sqrt[3]{8x}](https://tex.z-dn.net/?f=7%5Csqrt%5B3%5D%7B2x%7D%3D%5Csqrt%5B3%5D%7B8x%7D)
![3\sqrt[3]{16x}=3\sqrt[3]{2*2*2*2x}=6\sqrt[3]{2x}](https://tex.z-dn.net/?f=3%5Csqrt%5B3%5D%7B16x%7D%3D3%5Csqrt%5B3%5D%7B2%2A2%2A2%2A2x%7D%3D6%5Csqrt%5B3%5D%7B2x%7D)
![3\sqrt[3]{8x}=3\sqrt[3]{2*2*2x}=6\sqrt[3]{x}](https://tex.z-dn.net/?f=3%5Csqrt%5B3%5D%7B8x%7D%3D3%5Csqrt%5B3%5D%7B2%2A2%2A2x%7D%3D6%5Csqrt%5B3%5D%7Bx%7D)
now collect all the terms together
![7\sqrt[3]{2x} -6\sqrt[3]{2x} -6\sqrt[3]{x}](https://tex.z-dn.net/?f=7%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D)
Combine like terms
![\sqrt[3]{2x} -6\sqrt[3]{x}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D)
You might be interested in
Answer:
1 1/8 or 1.125 pints
explanation:
Hope this helps:)
Answer:
1.47
Step-by-step explanation:
it will be 1.47 for three pounds
Answer:
False.
Step-by-step explanation:
Apex
The answer should be 31/10
Fraction form 41/400
decimal form .1025