Answer:
The major product is 2-methyl-2-pentene [ CH₃-CH₂-CH=C(CH₃)₂ ] and a minor product 2-methyl-1-pentene [ CH₃-CH₂-CH₂-C(CH₃)=CH₂ ].
Explanation:
Dehydration reaction is a reaction in which a molecule loses a water molecule in the presence of a dehydrating agent like sulfuric acid (H₂SO₄).
<u>Dehydration reaction of 2-methyl-2-pentanol</u> gives a major product 2-methyl-2-pentene and a minor product 2-methyl-1-pentene.
CH₃-CH₂-CH₂-C(CH₃)₂-OH (2-methyl-2-pentanol)→ CH₃-CH₂-CH=C(CH₃)₂ (2-methyl-2-pentene, major) + CH₃-CH₂-CH₂-C(CH₃)=CH₂ (2-methyl-1-pentene, minor)
<u>Since more substituted alkene is more stable than the less substituted alkene. So, the trisubstituted alkene, 2-methyl-2-pentene is more stable than the disubstituted alkene, 2-methyl-1-pentene.</u>
<u>Therefore, the trisubstituted alkene, 2-methyl-2-pentene is the major product and the disubstituted alkene, 2-methyl-1-pentene is the minor product.</u>
Answer:
1) No shift
2) No shift
3) Leftward shift
4)Rightward sifht
Explanation:
1) 2) Adding N or Removing N in the equilibrium will produce No shift, because of its solid state, the N is not contemplated in the equilibrium equation:
3) Increasing the volume produces a decrase in the preassure due to the expansion of the gases. This will cause a leftward shift, because the system will try to increase the moles of gas and in consecuence of this, also increase the preassure.
4) Decreasing the volume has the opposite effect of the item 3): the preassure will increase and the system will consume moles of gas to decrease it, producing a rightward shift.
Answer:
increasing the number of molecules that have sufficient kinetic energy to react.
Explanation:
An increase in temperature affects the reaction rate by increasing the number of molecules that have sufficient kinetic energy to react.
or we say; temperature increase, leads to an increase in the amount of collisions between molecules.
Answer:
they are composed of water