The question is incomplete, complete question is :
In the Haber reaction, patented by German chemist Fritz Haber in 1908, dinitrogen gas combines with dihydrogen gas to produce gaseous ammonia. This reaction is now the first step taken to make most of the world's fertilizer. Suppose a chemical engineer studying a new catalyst for the Haber reaction finds that 348 liters per second of dinitrogen are consumed when the reaction is run at 205°C and 0.72 atm. Calculate the rate at which ammonia is being produced.
Answer:
The rate of production of ammonia is 217.08 grams per second.
Explanation:

Volume of dinitrogen used in a second = 348 L
Temperature of the gas = T = 205°C = 205+273 K = 478 K
Pressure of the gas = P = 0.72 atm
Moles of dinitrogen = n

According to reaction, 1 mole of dinitriogen gives 2 mole of ammonia.Then 6.385 moles of dinitrogen will give:

Mass of 12.769 moles of ammonia;
12.769 mol 17 g/mol = 217.08 g
217.08 grams of ammonia is produced per second.So, the rate of production of ammonia is 217.08 grams per second.
Answer:
For the following reaction, 8.00 grams of silicon tetrafluoride are allowed to react with 7.40 grams of water. silicon tetrafluoride (s) + water (l) hydrofluoric acid (aq) + silicon dioxide (s) What is the maximum amount of hydrofluoric acid that can be formed? grams What is the FORMULA for the limiting reagent? H2O What amount of the excess reagent remains after the reaction is complete? grams
Answer:
<h3>The answer is 1.28 N</h3>
Explanation:
The force acting on an object given the mass and acceleration we use the formula
<h3>force = mass × acceleration</h3>
From the question
mass = 142 g = 0.142 kg
acceleration = 9 m/s²
We have
force = 0.142 × 9 = 1.278
We have the final answer as
<h3>1.28 N</h3>
Hope this helps you
Answer:
I am sorry but this is cheating you have to come up with your own answer
Explanation: