Answer:
A. 4.5 mol Mg(OH)₂
B. 6 mol NaOH
Explanation:
Let's consider the following balanced equation.
Mg(NO₃)₂ + 2 NaOH ⇒ Mg(OH)₂ + 2 NaNO₃
PART A
The molar ratio of NaOH to Mg(OH)₂ is 2:1. The moles of Mg(OH)₂ produced from 9 moles of NaOH are:
9 mol NaOH × 1 mol Mg(OH)₂/2 mol NaOH = 4.5 mol Mg(OH)₂
PART B
The molar ratio of NaOH to NaNO₃ is 2:2. The moles of NaOH needed to produce 6 moles of NaNO₃ are:
6 mol NaNO₃ × 2 mol NaOH/2 mol NaNO₃ = 6 mol NaOH
Answer:
trigonal planar
Explanation:
The molecule SO3 is of the type AX3. The molecule is symmetrical and non polar.
There are three regions of electron density in the molecule. This corresponds to a trigonal planar geometry. This means that the three oxygen atoms are arranged at the corners of a triangle. The bond angle is 120 degrees.
1 valence electron in alkali metals.
Answer:
shell and tube type heat exchanger
Explanation:
for evaporation the shell and tube type heat exchanger is best suited.
- in the plate heat exchanger there is gaskets in between every part so this part become weak part in heat echanger and there is possibilities of leakage through this part, there is no such problem in shell and tube type.
- the plate type cant be used when there is high temperature and high pressure drop but shell and tube type can be used
- in evaporation there the liquids change into vapors due to which there is sudden change in pressure and in which plate type is not used because there is chances of leakage