<h3>
Answer:</h3>
6.26 g C
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 3.14 × 10²³ atoms C
[Solve] grams C
<u>Step 2: Identify Conversions</u>
Avogadro's Number
[PT] Molar Mass of C - 12.01 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
6.26227 g C ≈ 6.26 g C
Answer:
Air is less dense on a mountaintop than at sea level.
Air pressure is lower at low altitudes.
As you climb a mountain, air pressure increases.
More force pushes on the air at the bottom of an air column.
As you descend a mountain, air molecules are closer together.
Explanation:
Answer:

Explanation:
Hello there!
In this case, since the radioactive reaction for the alpha emission of astatine-218 to bismith-214 involve the release of a helium atom as shown below:

Whereas the atomic number decreases by 2 and the mass number by 4 in agreement to the release of the Helium atom.
Regards!
Time taken for star to reach Earth = 7.5 years
<h3>Further explanation</h3>
Given
7.5 light years(distance Earth-star)
Required
Time taken
Solution
Speed of light=v = 3 x 10⁸ m/s
1 light years = 9.461 × 10¹⁵ m= distance(d)
So time taken for 1 light years :
time(t) = distance(d) : speed(v)
t = 9.461 × 10¹⁵ m : 3 x 10⁸ m/s
t = 3.154 x 10⁷ s = 1 years
So for 7.5 light years, time taken = 7.5 years
I believe it’s a because something cannot move unless a force is acted upon it