Answer: a. The concentrations of the reactants and products have reached constant values
Explanation:
The reactions which do not go on completion and in which the reactant forms product and the products goes back to the reactants simultaneously are known as equilibrium reactions. For a chemical equilibrium reaction, equilibrium state is achieved when the rate of forward reaction becomes equal to rate of the backward reaction.
Equilibrium state is the state when reactants and products are present but the concentrations does not change with time and are constant.
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
K is the constant of a certain reaction when it is in equilibrium, while Q is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
For a equilibrium reaction,

![K_{eq}=\frac{[B]}{[A]}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D)
Thus the correct answer is the concentrations of the reactants and products have reached constant values.
Answer:
wavelength = 0.534×10⁻¹⁶ m
Explanation:
Given data:
Frequency of wave = 5.62 ×10²⁴ Hz
Wavelength = ?
Solution:
Speed of photon = wavelength × frequency
wavelength = speed of photon / frequency
Now we will put the values in formula:
wavelength = 3×10⁸ m/s / 5.62 ×10²⁴ Hz
Hz = s⁻¹
wavelength = 3×10⁸ m/s / 5.62 ×10²⁴ s⁻¹
wavelength = 0.534×10⁻¹⁶ m
Answer:
The equinoxes are the only time when both the Northern and Southern Hemispheres experience roughly equal amounts of daytime and nighttime. On Earth, there are two equinoxes every year: one around March 21 and another around September 22.
Explanation:
C. Mitosis
Mitosis is a process where a single cell divides into two identical daughter cells.
The purpose of which is for growth and to replace worn out cells.
Answer:
An exothermic reaction is a chemical reaction in which less energy is needed to break bonds in the reactants than is released when new bonds form in the products. During an exothermic reaction, energy is constantly given off, often in the form of heat. All combustion reactions are exothermic reactions.
Explanation: