Answer:
Explanation:
Did you mean: V = d/t a = (V - Vit Average = (V+ + V)/2 with constant acceleration d = Vit + 2 at? Vi = (V2 + 2ad)1/2 =VV2 + 2ad A stick figure throws a ball straight up into the air at 5 m/s. g = -9.81 m/s2 1. How long does it take to reach the top? 2. How long does it take to come back to the level of release? 3. If the hand is 1 m from the ground, how long will it take to hit the ground if the ball is not caught? 4. How high is the ball at the top from the ground? 5. What is the displacement of the ball, if it is caught on return? 6. What is the displacement of the ball to the top from release? 7. What is final velocity when you catch the ball on return to your hand? 8. What is the final velocity as it hits the ground? 9. What is the velocity at the top?
Showing results for V = d/t a = (V - Vil/t Vaverage = (V+ + V)/2 with constant acceleration d = Vit + 2 at? Vi = (V2 + 2ad)1/2 =VV2 + 2ad A stick figure throws a ball straight up into the air at 5 m/s. g = "-9.81" m/s2 1. How long does it take to reach the top? 2. How long does it take to come back to the level of release? 3. If the hand is 1 m from the ground, how long will it take to hit the ground if the ball is not caught? 4. How high is the ball at the top from the ground? 5. What is the displacement of the ball, if it is caught on return? 6. What is the displacement of the ball to the top from release? 7. What is final velocity when you catch the ball on return to your hand? 8. What is the final velocity as it hits the ground? 9. What is the velocity at the top?
Search instead for V = d/t a = (V - Vil/t Vaverage = (V+ + V)/2 with constant acceleration d = Vit + 2 at? Vi = (V2 + 2ad)1/2 =VV2 + 2ad A stick figure throws a ball straight up into the air at 5 m/s. g = -9.81 m/s2 1. How long does it take to reach the top? 2. How long does it take to come back to the level of release? 3. If the hand is 1 m from the ground, how long will it take to hit the ground if the ball is not caught? 4. How high is the ball at the top from the ground? 5. What is the displacement of the ball, if it is caught on return? 6. What is the displacement of the ball to the top from release? 7. What is final velocity when you catch the ball on return to your hand? 8. What is the final velocity as it hits the ground? 9. What is the velocity at the top?
The number of protons would be equivalent to the number of electrons if the net charge on the atom is 0.
The initial temperature of the copper metal was 27.38 degrees.
Explanation:
Data given:
mass of the copper metal sample = 215 gram
mass of water = 26.6 grams
Initial temperature of water = 22.22 Degrees
Final temperature of water = 24.44 degrees
Specific heat capacity of water = 0.385 J/g°C
initial temperature of copper material , Ti=?
specific heat capacity of water = 4.186 joule/gram °C
from the principle of:
heat lost = heat gained
heat gained by water is given by:
q water = mcΔT
Putting the values in the equation:
qwater = 26.6 x 4.186 x (2.22)
qwater = 247.19 J
qcopper = 215 x 0.385 x (Ti-24.4)
= 82.77Ti - 2019.71
Now heat lost by metal = heat gained by water
82.77Ti - 2019.71 = 247.19
Ti = 27.38 degrees
Answer:
no
Explanation:
Water is made up of oxygen and hydrogen. both of those are on the periodic table. water is not an element though
hope this helps!
Please mark me brainliest!