Answer:
<em>When molecular hydrogen (H2) and oxygen (O2) are combined and allowed to react together, energy is released and the molecules of hydrogen and oxygen can combine to form either water or hydrogen peroxide.</em>
Answer:
The molar mass of the organic solid is 120.16 g/mol.
The molecular formula of an organic solid is 
Explanation:
Let the molecular mass of an organic solid be 


where,
=Elevation in boiling point = 
Mass of organic solid= 0.561 g
Mass of diphenyl = 24.9 g = 0.0249 kg (1 kg = 1000 g)
= boiling point constant = 8.00 °C/m
m = molality
Now put all the given values in this formula, we get



Percentage of carbon in an organic solid = 40.0%

x = 4.0
Percentage of hydrogen in an organic solid = 6.7%

y = 8.0
Percentage of hydrogen in an organic solid = 6.7%

y = 4.0
The molecular formula of an organic solid is 
40 watts because 120-80 is forty or 80 + 40 - 120
Answer:
A) [H3PO4] will increase, [KH2PO4] will decrease, and pH will slightly decrease.
Explanation:
A buffer is a solution which resists changes to its pH when a small amount of acid or base is added to it.
Buffers consist of a weak acid (HA) and its conjugate base (A–) or a weak base and its conjugate acid. Weak acids and bases do not completely dissociate in water, and instead exist in solution as an equilibrium of dissociated and undissociated species. When a small quantity of a strong acid is added to a buffer solution, the conjugate base, A-, reacts with the hydrogen ions from the added acid to form the weak acid and a salt thereby removing the extra hydrogen ions from the solution and keeping the pH of the solution fairly constant. On the other hand, if a small quantity of a strong base is added to the buffer solution, the weak acid dissociates further to release hydrogen ions which then react with the hydroxide ions of the added base to form water and the conjugate base.
For example, if a small amount of strong acid is added to a buffer solution that is 0.700 M H3PO4 and 0.700 M KH2PO4, the following reaction is obtained:
KH₂PO₄ + H+ ----> K+ + H₃PO₄
Therefore, [H₃PO₄] will increase, [KH₂PO₄] will decrease, and pH will slightly decrease.: