The tension has to hold the part of the weight in the direction of the string:
T = mg*cos(theta)
Theta=0, whole weight, theta=90, T=0, if the pendulum is horizontal, the string will be loose! Yeah
Answer: µ=0.205
Explanation:
The horizontal forces acting on the ladder are the friction(f) at the floor and the normal force (Fw) at the wall. For horizontal equilibrium,
f=Fw
The sum of the moments about the base of the ladder Is 0
ΣM = 0 = Fw*L*sin74.3º - (25.8kg*(L/2) + 67.08kg*0.82L)*cos74.3º*9.8m/s²
Note that it doesn't matter WHAT the length of the ladder is -- it cancels.
Solve this for Fw.
0= 0.9637FwL - (67.91L)2.652
Fw=180.1/0.9637
Fw=186.87N
f=186.81N
Since Fw=f
We know Fw, so we know f.
But f = µ*Fn
where Fn is the normal force at the floor --
Fn = (25.8 + 67.08)kg * 9.8m/s² =
910.22N
so
µ = f / Fn
186.81/910.22
µ= 0.205
Hi! Decomposers (mainly soil bacterium, fungus, or invertebrate)<span /> are categorized as consumers due to the fact that they consume dead organic matter such as plants and animals. They differ from producers (green plants and some bacteria) because they do not produce their own food using photosynthesis or chemosythensis.
Hope this helped!
I haven't worked on Part-A, and I don't happen to know the magnitude of the gravitational force that the Sun exerts on the Earth.
But whatever it is, it's exactly, precisely, identical, the same, and equal to the magnitude of the gravitational force that the Earth exerts on the Sun.
I think that's the THIRD choice here, but I'm not sure of that either.