To solve this problem it is necessary to apply the concepts related to Malus' law. Malus' law indicates that the intensity of a linearly polarized ray of light that passes through a perfect analyzer with a vertical optical axis is equivalent to:

Indicates the intensity of the light before passing through the Polarizer,
I = The resulting intensity, and
= Indicates the angle between the axis of the analyzer and the polarization axis of the incident light.
There is 3 polarizer, then
For the exit of the first polarizer we have that the intensity is,

For the third polarizer then we have,

Replacing with the first equation,



Therefore the transmitted intensity now is
of the initial intensity.
Answer:
Different surfaces have different impact force during collision which depends on the time it takes the person to come to rest after collision.
Explanation:
Given;
speed on concrete = 12 m/s (27 mi/h)
speed on soil = 15 m/s (34 mi/h)
speed on water = 34 m/s (76 mi/h)
The impact force on this person during collision is rate of change of momentum;

During collision, the force exerted on this person depends on how long the collision lasts; that is, how long it takes for this person to come to rest after collision with each of the surfaces.
The longer the time of collision, the smaller the force exerted by each.
It takes shorter time for the person to come to rest on concrete surface than on soil surface, also it takes shorter time for the person to come to rest on soil surface than on water surface.
As a result of the reason above, the force exerted on the person during collision by the concrete surface is greater than that of soil surface which is greater than that of water surface.
Density is equal to mass divided by volume; that said, you would divide 38.6 by 2 to get your answer
Im pretty sure its Rolling friction also know as rolling resistance
Answer:
I don't think you can draw a diagram here.