Answer:
The correct answer is Option C (E1) and Option B (carbocation).
Explanation:
- Intramolecular immunity idols are considered as that of the formation mechanism with E1 responses or reactivity.
- Reactants with E1 were indeed obligations of both parties, meaning that an E1 reaction was conducted thru all the two stages known as ionization but rather deprotonation. Involves the absence of either an aromatic ring, a carbocation has been generated throughout the ionization solution.
Some other possibilities offered aren't relevant to the procedure outlined. So the above alternative is accurate.
Correct answer is
.
Phosphoric acid is a polyprotic acid having 3 acidic hyrdogen therefore it will have 3 pka values.
The equations for the release of acidic hydrogen can be written as:

From the pka values we can judge the idea of pH as using Henderson-Hasselbalch Equation, we get the relation between pH and pka.

Using the following equation, relation of pH and pka is
![pH=pka+log\frac{[A^-]}{HA}](https://tex.z-dn.net/?f=pH%3Dpka%2Blog%5Cfrac%7B%5BA%5E-%5D%7D%7BHA%7D)
Using this equation, we can find that the equation having pka= 2. 14 is closest to the pH=3.2 so the ionic form in this equation will be dominant at the same pH.
Therefore at pH=3.2 the ionic form
of
is dominant.
Answer:
44.6millilitres
Explanation:
Using the general gas law equation as follows:
P1V1/T1 = P2V2/T2
Where;
P1 = initial pressure (atm)
V1 = initial volume (L)
T1 = initial temperature (K)
P2 = final pressure (atm)
V2 = final volume (L)
T2 = final temperature (K)
According to this question;
V1 = 30mL
T1 = 273K (STP)
P1 = 1 atm (STP)
V2 = ?
T2 = 300K
P2 = 75.0 kPa = 75 × 0.00987 = 0.74atm
Using P1V1/T1 = P2V2/T2
1 × 30/273 = 0.74×V2/300
30/273 = 0.74V2/300
Cross multiply
300 × 30 = 273 × 0.74V2
9000 = 202.02V2
V2 = 9000/202.02
V2 = 44.55
V2 = 44.6millilitres.
The larger the piece the longer it will take to break down. This is because it has more mass that needs to be broken down.