Answer:
Paraffin oil is used for determination of boiling point and melting point for the following reasons: It has a very high boiling point and so it can be used to maintain high temperatures in the boiling and melting point apparatus without loss of the substance.
The answer would be the third option. (the angle at which the light hits the surface.)<span>
</span>
Answer:
Mole fraction H₂O → 0.72
Mole fraction C₂H₅OH → 0.28
Explanation:
By the mass of the two elements in the solution, we determine the moles of each:
25 g . 1 mol/ 18g = 1.39 moles of water (solute)
25 g . 1 mol / 46 g = 0.543 moles of ethanol (solvent)
Mole fraction solute = Moles of solute / Total moles
Mole fraction solvent = Moles of solvent / Total moles
Total moles = Moles of solute + Moles of solvent
1.39 moles of solute + 0.543 moles of solvent = 1.933 moles → Total moles
Mole fraction H₂O = 1.39 / 1.933 → 0.72
Mole fraction C₂H₅OH= 0.543 / 1.933 → 0.28
Remember that sum of mole fractions = 1
Answer:
(B) F⁻, HCOOH
Explanation:
(A) CH₄, HCOOH
(B) F⁻, HCOOH
(C) F⁻, CH₃-O-CH₃
The hydrogen bonds are formed when the hydrogen is found between two electronegative atoms such as oxygen (O), nitrogen (N) or florine (F).
O····H-O, F····H-O, O····H-N
(A) CH₄, HCOOH
- here methane CH₄ is not capable to form hydrogen bond with water
- formic acid HCOOH can form hydrogen bonds with water
H-C(=O)-O-H····OH₂
(B) F⁻, HCOOH
-both floride (F⁻) and formic acid can form hydrogen bonds with water
F····OH₂
H-C(=O)-O-H····OH₂
(C) F⁻, CH₃-O-CH₃
- dimethyl-ether CH₃-O-CH₃ is not capable to form hydrogen bond with water
- floride (F⁻) can form hydrogen bonds with water
F····OH₂