Refer to the image attached.
Given: Altitude AC = 9 cm, Diagonal AD = 15 cm, side AB = 82 cm.
To find: Area of parallelogram
Solution:
Since, area of parallelogram = base
height
= ![BD \times AC](https://tex.z-dn.net/?f=BD%20%5Ctimes%20AC)
We have to determine the base BD.
Consider the triangle ABC,
by Pythagoras theorem,
![(AB)^2 = (BC)^2 + (AC)^2](https://tex.z-dn.net/?f=%28AB%29%5E2%20%3D%20%28BC%29%5E2%20%2B%20%28AC%29%5E2)
![(82)^2 = (BC)^2 + (9)^2](https://tex.z-dn.net/?f=%2882%29%5E2%20%3D%20%28BC%29%5E2%20%2B%20%289%29%5E2)
![6724-81= (BC)^2](https://tex.z-dn.net/?f=6724-81%3D%20%28BC%29%5E2)
BC = 81.5 cm
Now, Consider the triangle ACD,
by Pythagoras theorem,
![(AD)^2 = (AC)^2 + (CD)^2](https://tex.z-dn.net/?f=%28AD%29%5E2%20%3D%20%28AC%29%5E2%20%2B%20%28CD%29%5E2)
![(15)^2 = (9)^2 + (CD)^2](https://tex.z-dn.net/?f=%2815%29%5E2%20%3D%20%289%29%5E2%20%2B%20%28CD%29%5E2)
![225-81= (CD)^2](https://tex.z-dn.net/?f=225-81%3D%20%28CD%29%5E2)
CD = 12 cm
Now, base BD = BC + CD
= 81.5+12
= 93.5 cm
Area of parallelogram = BD ![\times AC](https://tex.z-dn.net/?f=%5Ctimes%20AC)
= 93.5 x 9
= 841.5 square centimeters.
Therefore, the area of parallelogram is 841.5 square centimeters.