Answer:
- Center = (3, 0)
- Radius = 3
- Graph = see below
Concept:
Here, we need to know the idea of the circle equation.
Circle equation: (x - h)² + (y - k)² = r²
(h, k) = center
r = radius
x = variable
y = variable
Solve:
<u>Given expression </u>
(x - 3)² + y² = 9
<u>Find the point of the center</u>
(h, k) = ![\boxed{(3,0)}](https://tex.z-dn.net/?f=%5Cboxed%7B%283%2C0%29%7D)
<u>Find the length of the radius</u>
r² = 9
![\boxed{r=3}](https://tex.z-dn.net/?f=%5Cboxed%7Br%3D3%7D)
Hope this helps!! :)
Please let me know if you have any questions
25.69 + .75= $26.44
Hope this helps.
Answer:
The rate of decrease is: ![43.2mm^3/min](https://tex.z-dn.net/?f=43.2mm%5E3%2Fmin)
Step-by-step explanation:
Given
![l = 18mm](https://tex.z-dn.net/?f=l%20%3D%2018mm)
---- We used minus because the rate is decreasing
Required
Rate of decrease when: ![l = 18mm](https://tex.z-dn.net/?f=l%20%3D%2018mm)
The volume of the cube is:
![V = l^3](https://tex.z-dn.net/?f=V%20%3D%20l%5E3)
Differentiate
![\frac{dV}{dl} = 3l^2](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdl%7D%20%3D%203l%5E2)
Make dV the subject
![dV = 3l^2 \cdot dl](https://tex.z-dn.net/?f=dV%20%3D%203l%5E2%20%5Ccdot%20dl)
Divide both sides by dt
![\frac{dV}{dt} = 3l^2 \cdot \frac{dl}{dt}](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdt%7D%20%3D%203l%5E2%20%5Ccdot%20%5Cfrac%7Bdl%7D%7Bdt%7D)
Given that:
and ![\frac{dl}{dt} = -0.8mm/min](https://tex.z-dn.net/?f=%5Cfrac%7Bdl%7D%7Bdt%7D%20%3D%20-0.8mm%2Fmin)
![\frac{dV}{dt} = 3 * (18mm)^2 * (-0.8mm/min)](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdt%7D%20%3D%203%20%2A%20%2818mm%29%5E2%20%2A%20%28-0.8mm%2Fmin%29)
![\frac{dV}{dt} = 3 * 18 *-0.8mm^3/min](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdt%7D%20%3D%203%20%2A%2018%20%2A-0.8mm%5E3%2Fmin)
![\frac{dV}{dt} = -43.2mm^3/min](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdt%7D%20%3D%20-43.2mm%5E3%2Fmin)
<em>Hence, the rate of decrease is: 43.2mm^3/min</em>
Answer:
The file will help
Step-by-step explanation:
3000000÷1.125=2666666.6667
Round off to 2666667 people.
Feel free to correct this if wrong.